Jinhui Pang, Yuping Xiong, Yujie Zeng, Xiaohong Chen, Jianrong Li, Xinhua Zhang, Yuan Li, Kunlin Wu, Songjun Zeng, Jaime A. Teixeira da Silva, Guohua Ma
{"title":"Shoot Organogenesis from Tetrastigma hemsleyanum Leaf and Petiole Explants, and Subsequent Plant Regeneration and Acclimatization","authors":"Jinhui Pang, Yuping Xiong, Yujie Zeng, Xiaohong Chen, Jianrong Li, Xinhua Zhang, Yuan Li, Kunlin Wu, Songjun Zeng, Jaime A. Teixeira da Silva, Guohua Ma","doi":"10.1007/s00344-024-11433-5","DOIUrl":null,"url":null,"abstract":"<p><i>Tetrastigma hemsleyanum</i> is a perennial evergreen vine of the Vitaceae. The entire herb is used in traditional Chinese medicine as a broad-spectrum plant-based antibiotic, so it has high economic and social value. Wild <i>T. hemsleyanum</i> resources are scarce, so it has been declared an endangered and rare medicinal plant. Seed yield is low and vegetative propagation by cuttings results in limited plant production, so development of the <i>T. hemsleyanum</i> industry requires optimized propagation protocols and the development of new biotechnologies to proliferate this plant in commercial quantities. In this study, shoot organogenesis was successfully induced from leaves and petioles. Two plant growth regulators, 6-benzyladenine (BA) and thidiazuron, induced callus and adventitious shoots, but the ideal adventitious shoot induction medium was Murashige and Skoog (MS) medium containing 1.0 mg L<sup>−1</sup> BA and 0.1 mg L<sup>−1</sup> α-naphthaleneacetic acid (NAA). This resulted in a shoot proliferation coefficient (SPC) of 6.73 within 30 d at a light intensity of 100 µmol m<sup>−2</sup> s<sup>−1</sup>. When light intensity was increased from 50 to 200 µmol m<sup>−2</sup> s<sup>−1</sup>, SPC (7.35), chlorophyll a (Chl <i>a</i>), Chl <i>b</i>, and total Chl (<i>a</i> + <i>b</i>) content increased. On MS medium containing 0.1–2.0 mg L<sup>−1</sup> NAA or indole-3-butyric acid, 100% of adventitious shoots formed adventitious roots. Plantlets showed no obvious morphological variation, and their survival exceeded 98% on a substrate of peat and river sand (<i>v:v</i> = 2:1). This study’s protocols allow for the mass production of adventitious shoots for conservation purposes, and potentially for the commercial propagation of <i>T. hemsleyanum</i>.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"14 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11433-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tetrastigma hemsleyanum is a perennial evergreen vine of the Vitaceae. The entire herb is used in traditional Chinese medicine as a broad-spectrum plant-based antibiotic, so it has high economic and social value. Wild T. hemsleyanum resources are scarce, so it has been declared an endangered and rare medicinal plant. Seed yield is low and vegetative propagation by cuttings results in limited plant production, so development of the T. hemsleyanum industry requires optimized propagation protocols and the development of new biotechnologies to proliferate this plant in commercial quantities. In this study, shoot organogenesis was successfully induced from leaves and petioles. Two plant growth regulators, 6-benzyladenine (BA) and thidiazuron, induced callus and adventitious shoots, but the ideal adventitious shoot induction medium was Murashige and Skoog (MS) medium containing 1.0 mg L−1 BA and 0.1 mg L−1 α-naphthaleneacetic acid (NAA). This resulted in a shoot proliferation coefficient (SPC) of 6.73 within 30 d at a light intensity of 100 µmol m−2 s−1. When light intensity was increased from 50 to 200 µmol m−2 s−1, SPC (7.35), chlorophyll a (Chl a), Chl b, and total Chl (a + b) content increased. On MS medium containing 0.1–2.0 mg L−1 NAA or indole-3-butyric acid, 100% of adventitious shoots formed adventitious roots. Plantlets showed no obvious morphological variation, and their survival exceeded 98% on a substrate of peat and river sand (v:v = 2:1). This study’s protocols allow for the mass production of adventitious shoots for conservation purposes, and potentially for the commercial propagation of T. hemsleyanum.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.