MEVDT: Multi-Modal Event-Based Vehicle Detection and Tracking Dataset

Zaid A. El Shair, Samir A. Rawashdeh
{"title":"MEVDT: Multi-Modal Event-Based Vehicle Detection and Tracking Dataset","authors":"Zaid A. El Shair, Samir A. Rawashdeh","doi":"arxiv-2407.20446","DOIUrl":null,"url":null,"abstract":"In this data article, we introduce the Multi-Modal Event-based Vehicle\nDetection and Tracking (MEVDT) dataset. This dataset provides a synchronized\nstream of event data and grayscale images of traffic scenes, captured using the\nDynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera.\nMEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M\nevents, 10k object labels, and 85 unique object tracking trajectories.\nAdditionally, MEVDT includes manually annotated ground truth labels\n$\\unicode{x2014}$ consisting of object classifications, pixel-precise bounding\nboxes, and unique object IDs $\\unicode{x2014}$ which are provided at a labeling\nfrequency of 24 Hz. Designed to advance the research in the domain of\nevent-based vision, MEVDT aims to address the critical need for high-quality,\nreal-world annotated datasets that enable the development and evaluation of\nobject detection and tracking algorithms in automotive environments.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this data article, we introduce the Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT) dataset. This dataset provides a synchronized stream of event data and grayscale images of traffic scenes, captured using the Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera. MEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M events, 10k object labels, and 85 unique object tracking trajectories. Additionally, MEVDT includes manually annotated ground truth labels $\unicode{x2014}$ consisting of object classifications, pixel-precise bounding boxes, and unique object IDs $\unicode{x2014}$ which are provided at a labeling frequency of 24 Hz. Designed to advance the research in the domain of event-based vision, MEVDT aims to address the critical need for high-quality, real-world annotated datasets that enable the development and evaluation of object detection and tracking algorithms in automotive environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEVDT:基于事件的多模式车辆检测与跟踪数据集
在这篇数据文章中,我们将介绍基于多模式事件的车辆检测与跟踪(MEVDT)数据集。MEVDT 包含 63 个多模态序列,其中有约 13k 幅图像、5 个事件、10k 个对象标签和 85 个独特的对象跟踪轨迹。此外,MEVDT 还包含人工标注的地面真实标签(unicode{x2014}$),包括物体分类、像素精确的边界框和独特的物体 ID(unicode{x2014}$),标签频率为 24 Hz。MEVDT 旨在推动基于事件的视觉领域的研究,满足对高质量、真实世界注释数据集的迫切需求,从而开发和评估汽车环境中的物体检测和跟踪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1