Constant-Cost Communication is not Reducible to k-Hamming Distance

Yuting Fang, Mika Göös, Nathaniel Harms, Pooya Hatami
{"title":"Constant-Cost Communication is not Reducible to k-Hamming Distance","authors":"Yuting Fang, Mika Göös, Nathaniel Harms, Pooya Hatami","doi":"arxiv-2407.20204","DOIUrl":null,"url":null,"abstract":"Every known communication problem whose randomized communication cost is\nconstant (independent of the input size) can be reduced to $k$-Hamming\nDistance, that is, solved with a constant number of deterministic queries to\nsome $k$-Hamming Distance oracle. We exhibit the first examples of\nconstant-cost problems which cannot be reduced to $k$-Hamming Distance. To prove this separation, we relate it to a natural coding-theoretic\nquestion. For $f : \\{2, 4, 6\\} \\to \\mathbb{N}$, we say an encoding function $E\n: \\{0, 1\\}^n \\to \\{0, 1\\}^m$ is an $f$-code if it transforms Hamming distances\naccording to $\\mathrm{dist}(E(x), E(y)) = f(\\mathrm{dist}(x, y))$ whenever $f$\nis defined. We prove that, if there exist $f$-codes for infinitely many $n$,\nthen $f$ must be affine: $f(4) = (f(2) + f(6))/2$.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Every known communication problem whose randomized communication cost is constant (independent of the input size) can be reduced to $k$-Hamming Distance, that is, solved with a constant number of deterministic queries to some $k$-Hamming Distance oracle. We exhibit the first examples of constant-cost problems which cannot be reduced to $k$-Hamming Distance. To prove this separation, we relate it to a natural coding-theoretic question. For $f : \{2, 4, 6\} \to \mathbb{N}$, we say an encoding function $E : \{0, 1\}^n \to \{0, 1\}^m$ is an $f$-code if it transforms Hamming distances according to $\mathrm{dist}(E(x), E(y)) = f(\mathrm{dist}(x, y))$ whenever $f$ is defined. We prove that, if there exist $f$-codes for infinitely many $n$, then $f$ must be affine: $f(4) = (f(2) + f(6))/2$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恒定成本通信与 k-Hamming 距离无关
每一个随机通信成本恒定(与输入大小无关)的已知通信问题,都可以简化为 $k$-汉明距离,也就是说,只需对 $k$-Hamming Distance 甲骨文进行恒定次数的确定性查询即可求解。我们首次举例说明了不能简化为 $k$-Hamming 距离的实体成本问题。为了证明这种分离,我们把它与一个自然的编码理论问题联系起来。对于 $f :\{2, 4, 6\}\我们说一个编码函数 $E:\{0, 1\}^n \to \{0, 1\}^m$ 是一个 $f$ 代码,如果它在 $f$ 被定义的情况下按照 $\mathrm{dist}(E(x), E(y)) = f(\mathrm{dist}(x, y))$ 转换汉明距离的话。我们证明,如果存在无限多 $n$ 的 $f$ 代码,那么 $f$ 一定是仿射的:$f(4) = (f(2) + f(6))/2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Direct Sum Tests Complexity and algorithms for Swap median and relation to other consensus problems Journalists, Emotions, and the Introduction of Generative AI Chatbots: A Large-Scale Analysis of Tweets Before and After the Launch of ChatGPT Almost-catalytic Computation Fast Simulation of Cellular Automata by Self-Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1