Faisal Zulfiqar, Arwa Abdulkreem AL-Huqail, Suliman Mohammed Suliman Alghanem, Ibtisam Mohammed Alsudays, Anam Moosa, Jianjun Chen, Tarek M. A. Soliman, Özhan Şimşek, Mehmet Tütüncü, Taner Bozkurt, Anastasios Darras, Amany H. A. Abeed
{"title":"Ascorbic Acid Increases Cut Flower Longevity of Sword Lily by Regulating Oxidative Stress and Reducing Microbial Load","authors":"Faisal Zulfiqar, Arwa Abdulkreem AL-Huqail, Suliman Mohammed Suliman Alghanem, Ibtisam Mohammed Alsudays, Anam Moosa, Jianjun Chen, Tarek M. A. Soliman, Özhan Şimşek, Mehmet Tütüncü, Taner Bozkurt, Anastasios Darras, Amany H. A. Abeed","doi":"10.1007/s00344-024-11396-7","DOIUrl":null,"url":null,"abstract":"<p>The longevity of cut flowers is associated with various physio-biochemical traits. To extend vase life (VL) of cut flowers, a wide range of chemical-based preservatives solutions have been used, which raise the concerns of human health and environmental pollution. This study explored the potential of using ascorbic acid (AsA) to naturally extend the VL of cut sword lily (<i>Gladiolus grandifloras</i>) ‘White Prosperity’ flowers. Fresh spikes were placed in vase solutions containing 1, 2, 3 and 4% AsA solutions, denoted as AsA1, AsA2, AsA3 and AsA4, respectively, as well as distilled water (DsW) as control. The AsA solutions prolonged the VL from 5.75 to 12.5 days. The treatment AsA4 significantly improved the relative fresh weight, floret diameter, the number of open florets, and chlorophyll contents. Ascorbic acid decreased oxidative stress (malondialdehyde and hydrogen peroxide) and boosted proline and total soluble proteins levels in cut sword lily, indicating a link with reduced water stress. AsA application improved phenols and sugars in the florets. Bacterial count was low in AsA-based vase solutions. Overall, AsA4 had the best performance with respect to VL and other associated traits. Given the encouraging outcomes of the ongoing research, AsA may be recommended as a viable postharvest treatment to extend the VL of sword lily.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"360 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11396-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The longevity of cut flowers is associated with various physio-biochemical traits. To extend vase life (VL) of cut flowers, a wide range of chemical-based preservatives solutions have been used, which raise the concerns of human health and environmental pollution. This study explored the potential of using ascorbic acid (AsA) to naturally extend the VL of cut sword lily (Gladiolus grandifloras) ‘White Prosperity’ flowers. Fresh spikes were placed in vase solutions containing 1, 2, 3 and 4% AsA solutions, denoted as AsA1, AsA2, AsA3 and AsA4, respectively, as well as distilled water (DsW) as control. The AsA solutions prolonged the VL from 5.75 to 12.5 days. The treatment AsA4 significantly improved the relative fresh weight, floret diameter, the number of open florets, and chlorophyll contents. Ascorbic acid decreased oxidative stress (malondialdehyde and hydrogen peroxide) and boosted proline and total soluble proteins levels in cut sword lily, indicating a link with reduced water stress. AsA application improved phenols and sugars in the florets. Bacterial count was low in AsA-based vase solutions. Overall, AsA4 had the best performance with respect to VL and other associated traits. Given the encouraging outcomes of the ongoing research, AsA may be recommended as a viable postharvest treatment to extend the VL of sword lily.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.