Fabrication of Multi-Material Functional Circuits Using Microfluidic Directed Materials Patterning

Jessica R. Wagner, Matthew R. Jamison, Stephen A. Morin
{"title":"Fabrication of Multi-Material Functional Circuits Using Microfluidic Directed Materials Patterning","authors":"Jessica R. Wagner, Matthew R. Jamison, Stephen A. Morin","doi":"10.1002/admt.202400307","DOIUrl":null,"url":null,"abstract":"Traditional circuit board fabrication schemes are not directly applicable to the production of flexible, multi-material circuits. This article reports a technique, microfluidic directed material patterning, which combines soft microfluidic stamps and low-temperature solution-phase deposition to generate multi-material circuits on flexible, non-planar polymeric supports. Specifically, metallic and semiconductive traces are combined on commodity plastic films to yield functional photosensitive circuits that can be used in the spectrophotometric detection and concentration measurement of microdroplets on 3D “e-plates.” The photoresistive material cadmium sulfide is used in these circuits because it is suitable for visible light detection and it can be deposited directly from aqueous solutions following established bath deposition procedures. This method can produce colorimetric devices capable of quantifying micromolar concentrations of Allura Red in microdroplets of Kool-Aid. This technique presents the opportunity for producing single-use or low-use disposable/recyclable devices for flexible 3D sensors and detectors following a convenient, low-waste fabrication scheme. The general capabilities of this approach, in terms of substrate geometry and device layout (e.g., the number, area, and pattern of photoresistive elements), can be applied to the design and manufacture of more intricate, multiplexed devices supportive of advanced and/or specialized functions that go beyond those reported in this initial demonstration.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional circuit board fabrication schemes are not directly applicable to the production of flexible, multi-material circuits. This article reports a technique, microfluidic directed material patterning, which combines soft microfluidic stamps and low-temperature solution-phase deposition to generate multi-material circuits on flexible, non-planar polymeric supports. Specifically, metallic and semiconductive traces are combined on commodity plastic films to yield functional photosensitive circuits that can be used in the spectrophotometric detection and concentration measurement of microdroplets on 3D “e-plates.” The photoresistive material cadmium sulfide is used in these circuits because it is suitable for visible light detection and it can be deposited directly from aqueous solutions following established bath deposition procedures. This method can produce colorimetric devices capable of quantifying micromolar concentrations of Allura Red in microdroplets of Kool-Aid. This technique presents the opportunity for producing single-use or low-use disposable/recyclable devices for flexible 3D sensors and detectors following a convenient, low-waste fabrication scheme. The general capabilities of this approach, in terms of substrate geometry and device layout (e.g., the number, area, and pattern of photoresistive elements), can be applied to the design and manufacture of more intricate, multiplexed devices supportive of advanced and/or specialized functions that go beyond those reported in this initial demonstration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微流体定向材料图案化制造多材料功能电路
传统的电路板制造方案无法直接用于柔性多材料电路的生产。本文报道了一种微流体定向材料图案化技术,该技术结合了软性微流体印章和低温溶液相沉积技术,可在柔性非平面聚合物支架上生成多材料电路。具体来说,在商品塑料薄膜上结合金属和半导体迹线,生成功能性光敏电路,可用于三维 "电子板 "上微滴的分光光度检测和浓度测量。这些电路中使用了光敏材料硫化镉,因为它适用于可见光检测,而且可以按照既定的浴沉积程序直接从水溶液中沉积出来。这种方法可以生产出比色装置,能够量化酷爱饮料微滴中的微摩尔浓度 Allura Red。这项技术提供了一个机会,可以按照便捷、低废物的制造方案,为灵活的三维传感器和探测器生产一次性或低用量的一次性/可回收装置。这种方法在基底几何和器件布局(如光阻元件的数量、面积和模式)方面的一般能力,可用于设计和制造更复杂、支持高级和/或特殊功能的多路复用器件,其功能超出了本次初步演示所报告的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1