Shiraz Badurdeen, Robert Galinsky, Calum Roberts, Kelly J Crossley, Valerie Zahra, Alison Thiel, Yen Pham, Peter Davis, Stuart B. Hooper, Graeme Polglase, Emily Camm
{"title":"Rapid oxygen titration following cardiopulmonary resuscitation mitigates cerebral overperfusion and striatal mitochondrial dysfunction in asphyxiated newborn lambs","authors":"Shiraz Badurdeen, Robert Galinsky, Calum Roberts, Kelly J Crossley, Valerie Zahra, Alison Thiel, Yen Pham, Peter Davis, Stuart B. Hooper, Graeme Polglase, Emily Camm","doi":"10.1101/2024.07.27.603805","DOIUrl":null,"url":null,"abstract":"Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen (standard oxygen, n=8) or air (n=7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC (rapid-wean, n=7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.","PeriodicalId":501557,"journal":{"name":"bioRxiv - Physiology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.27.603805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen (standard oxygen, n=8) or air (n=7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC (rapid-wean, n=7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.