FOXA1 exacerbates LPS-induced vascular endothelial cell injury in sepsis by suppressing the transcription of NRP2

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-30 DOI:10.1007/s10616-024-00647-w
Chun Li, Likun Gou
{"title":"FOXA1 exacerbates LPS-induced vascular endothelial cell injury in sepsis by suppressing the transcription of NRP2","authors":"Chun Li, Likun Gou","doi":"10.1007/s10616-024-00647-w","DOIUrl":null,"url":null,"abstract":"<p>Endothelial dysfunction plays a critical role in the pathogenesis of sepsis. This study aims to explore the effect and mechanism of forkhead box A1 (FOXA1) on vascular endothelial cell injury in sepsis. Human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharide (LPS). Lactate dehydrogenase (LDH) release, cell viability, apoptosis, and inflammatory factors including IL-1β, TNF-α, and IL-6 were measured using LDH kits, CCK-8 assay, flow cytometry, and ELISA respectively. RT-qPCR or Western blot determined the expression of FOXA1 or neuropilin-2 (NRP2) in cells. The binding between FOXA1 and NRP2 was confirmed using ChIP and dual-luciferase assays. Functional rescue experiments were performed to verify the effect of FOXA1 siRNA or NRP2 siRNA on cell injury. LPS treatment induced endothelial cell injury in a concentration-dependent manner. FOXA1 expression was elevated after LPS treatment. FOXA1 silencing reduced LDH release, enhanced cell viability, suppressed apoptosis, and declined inflammation factors. Mechanistically, FOXA1 bound to the NRP2 promoter to suppress the transcription of NRP2. Functional rescue experiments revealed that knockdown of NRP2 offset the protective effect of knockdown of FOXA1 on cell injury. In conclusion, FOXA1 exacerbates LPS-insulted endothelial cell injury in sepsis by repressing the transcription of NRP2.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00647-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Endothelial dysfunction plays a critical role in the pathogenesis of sepsis. This study aims to explore the effect and mechanism of forkhead box A1 (FOXA1) on vascular endothelial cell injury in sepsis. Human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharide (LPS). Lactate dehydrogenase (LDH) release, cell viability, apoptosis, and inflammatory factors including IL-1β, TNF-α, and IL-6 were measured using LDH kits, CCK-8 assay, flow cytometry, and ELISA respectively. RT-qPCR or Western blot determined the expression of FOXA1 or neuropilin-2 (NRP2) in cells. The binding between FOXA1 and NRP2 was confirmed using ChIP and dual-luciferase assays. Functional rescue experiments were performed to verify the effect of FOXA1 siRNA or NRP2 siRNA on cell injury. LPS treatment induced endothelial cell injury in a concentration-dependent manner. FOXA1 expression was elevated after LPS treatment. FOXA1 silencing reduced LDH release, enhanced cell viability, suppressed apoptosis, and declined inflammation factors. Mechanistically, FOXA1 bound to the NRP2 promoter to suppress the transcription of NRP2. Functional rescue experiments revealed that knockdown of NRP2 offset the protective effect of knockdown of FOXA1 on cell injury. In conclusion, FOXA1 exacerbates LPS-insulted endothelial cell injury in sepsis by repressing the transcription of NRP2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOXA1 通过抑制 NRP2 的转录加剧脓毒症中 LPS 诱导的血管内皮细胞损伤
内皮功能障碍在脓毒症的发病机制中起着至关重要的作用。本研究旨在探讨叉头盒 A1(FOXA1)对脓毒症血管内皮细胞损伤的影响和机制。人脐静脉内皮细胞(HUVECs)受到脂多糖(LPS)的刺激。分别使用 LDH 试剂盒、CCK-8 检测法、流式细胞仪和 ELISA 检测乳酸脱氢酶(LDH)释放、细胞活力、细胞凋亡和炎症因子(包括 IL-1β、TNF-α 和 IL-6)。RT-qPCR 或 Western 印迹法测定细胞中 FOXA1 或神经蛋白-2(NRP2)的表达。FOXA1 和 NRP2 之间的结合通过 ChIP 和双荧光素酶检测得到了证实。为了验证 FOXA1 siRNA 或 NRP2 siRNA 对细胞损伤的影响,我们进行了功能拯救实验。LPS 处理以浓度依赖性方式诱导内皮细胞损伤。LPS 处理后 FOXA1 表达升高。沉默 FOXA1 可减少 LDH 释放、提高细胞活力、抑制细胞凋亡并减少炎症因子。从机制上讲,FOXA1 与 NRP2 启动子结合,抑制了 NRP2 的转录。功能拯救实验显示,敲除 NRP2 抵消了敲除 FOXA1 对细胞损伤的保护作用。总之,FOXA1通过抑制NRP2的转录加剧了脓毒症中LPS诱导的内皮细胞损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1