Effect of Coarse Aggregate Gradation on the Acoustic Emission and Microseismic Behavior of Concrete Under Load

IF 1.7 4区 工程技术 Q3 ENGINEERING, CIVIL Iranian Journal of Science and Technology, Transactions of Civil Engineering Pub Date : 2024-07-29 DOI:10.1007/s40996-024-01525-3
Changyu Wu, Yihong Zheng, Chengyu Liu
{"title":"Effect of Coarse Aggregate Gradation on the Acoustic Emission and Microseismic Behavior of Concrete Under Load","authors":"Changyu Wu, Yihong Zheng, Chengyu Liu","doi":"10.1007/s40996-024-01525-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, uniaxial compression tests were carried out on nine concrete specimens with different coarse aggregate particle size ranges in single and continuous gradation at curing ages of 3, 7 and 28 d, respectively. The acoustic emission (AE) and microseismic (MS) signals of the whole loading process were monitored by combining AE and MS to investigate. The AE and MS signals characteristics of concrete with different coarse aggregate gradations during load damage at different curing ages were analyzedand the effect of the maximum coarse aggregate size on the damage evolution of concrete were investigated. Based on findings from experiments, as the maximum particle size of the coarse aggregate increases, the initial defects within the concrete specimens initially decrease and then increase. A larger size and the more heterogeneous of the coarse aggregate has an accelerating effect on the emergence and expansion of cracks throughout the load-induced damage process in concrete structures. In addition, when the curing age is brief, the expansion of internal cracks in concrete predominantly depends on the curing age, with the relationship to the maximum particle size of coarse aggregate being less evident.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01525-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, uniaxial compression tests were carried out on nine concrete specimens with different coarse aggregate particle size ranges in single and continuous gradation at curing ages of 3, 7 and 28 d, respectively. The acoustic emission (AE) and microseismic (MS) signals of the whole loading process were monitored by combining AE and MS to investigate. The AE and MS signals characteristics of concrete with different coarse aggregate gradations during load damage at different curing ages were analyzedand the effect of the maximum coarse aggregate size on the damage evolution of concrete were investigated. Based on findings from experiments, as the maximum particle size of the coarse aggregate increases, the initial defects within the concrete specimens initially decrease and then increase. A larger size and the more heterogeneous of the coarse aggregate has an accelerating effect on the emergence and expansion of cracks throughout the load-induced damage process in concrete structures. In addition, when the curing age is brief, the expansion of internal cracks in concrete predominantly depends on the curing age, with the relationship to the maximum particle size of coarse aggregate being less evident.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粗集料级配对混凝土在荷载作用下的声发射和微震行为的影响
本文分别在 3、7 和 28 d 的养护龄期对 9 个粗骨料粒径范围不同的单级配和连续级配混凝土试件进行了单轴压缩试验。通过声发射(AE)和微震(MS)相结合的方法,对整个加载过程的声发射(AE)和微震(MS)信号进行了监测和研究。分析了不同粗骨料级配的混凝土在不同养护龄期荷载破坏过程中的 AE 和 MS 信号特征,并研究了最大粗骨料粒径对混凝土破坏演变的影响。实验结果表明,随着粗骨料最大粒径的增大,混凝土试件内部的初始缺陷先减小后增大。粗骨料的粒径越大、异质性越强,在混凝土结构的整个荷载诱发破坏过程中,对裂缝的出现和扩展有加速作用。此外,当养护龄期较短时,混凝土内部裂缝的扩展主要取决于养护龄期,与粗骨料最大粒径的关系并不明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
11.80%
发文量
203
期刊介绍: The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following: -Structural engineering- Earthquake engineering- Concrete engineering- Construction management- Steel structures- Engineering mechanics- Water resources engineering- Hydraulic engineering- Hydraulic structures- Environmental engineering- Soil mechanics- Foundation engineering- Geotechnical engineering- Transportation engineering- Surveying and geomatics.
期刊最新文献
Coupled Rainfall-Runoff and Hydrodynamic Modeling using MIKE + for Flood Simulation Mechanical and Microstructural Characteristics of Fly Ash-Nano-Silica Composites Enhancement of the Mechanical Characteristics of a Green Mortar Under Extreme Conditions: Experimental Study and Optimization Analysis A Case Study on the Effect of Multiple Earthquakes on Mid-rise RC Buildings with Mass and Stiffness Irregularity in Height Incremental Plastic Analysis of Confined Concrete Considering the Variation of Elastic Moduli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1