Lock-Free Computation of PageRank in Dynamic Graphs

Subhajit Sahu
{"title":"Lock-Free Computation of PageRank in Dynamic Graphs","authors":"Subhajit Sahu","doi":"arxiv-2407.19562","DOIUrl":null,"url":null,"abstract":"PageRank is a metric that assigns importance to the vertices of a graph based\non its neighbors and their scores. Recently, there has been increasing interest\nin computing PageRank on dynamic graphs, where the graph structure evolves due\nto edge insertions and deletions. However, traditional barrier-based approaches\nfor updating PageRanks encounter significant wait times on certain graph\nstructures, leading to high overall runtimes. Additionally, the growing trend\nof multicore architectures with increased core counts has raised concerns about\nrandom thread delays and failures. In this study, we propose a lock-free\nalgorithm for updating PageRank scores on dynamic graphs. First, we introduce\nour Dynamic Frontier (DF) approach, which identifies and processes vertices\nlikely to change PageRanks with minimal overhead. Subsequently, we integrate DF\nwith our lock-free and fault-tolerant PageRank ($DF_{LF}$), incorporating a\nhelping mechanism among threads between its two phases. Experimental results\ndemonstrate that $DF_{LF}$ not only eliminates waiting times at iteration\nbarriers but also withstands random thread delays and crashes. On average, it\nis 4.6x faster than lock-free Naive-dynamic PageRank ($ND_{LF}$).","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PageRank is a metric that assigns importance to the vertices of a graph based on its neighbors and their scores. Recently, there has been increasing interest in computing PageRank on dynamic graphs, where the graph structure evolves due to edge insertions and deletions. However, traditional barrier-based approaches for updating PageRanks encounter significant wait times on certain graph structures, leading to high overall runtimes. Additionally, the growing trend of multicore architectures with increased core counts has raised concerns about random thread delays and failures. In this study, we propose a lock-free algorithm for updating PageRank scores on dynamic graphs. First, we introduce our Dynamic Frontier (DF) approach, which identifies and processes vertices likely to change PageRanks with minimal overhead. Subsequently, we integrate DF with our lock-free and fault-tolerant PageRank ($DF_{LF}$), incorporating a helping mechanism among threads between its two phases. Experimental results demonstrate that $DF_{LF}$ not only eliminates waiting times at iteration barriers but also withstands random thread delays and crashes. On average, it is 4.6x faster than lock-free Naive-dynamic PageRank ($ND_{LF}$).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态图中 PageRank 的无锁计算
PageRank 是一种度量方法,它根据图中顶点的邻居及其得分来确定顶点的重要性。最近,人们对在动态图上计算 PageRank 越来越感兴趣,在动态图中,图结构会随着边的插入和删除而变化。然而,传统的基于障碍的 PageRanks 更新方法在某些图结构上需要大量等待时间,导致总体运行时间较长。此外,多核架构内核数不断增加的趋势也引发了对随机线程延迟和故障的担忧。在本研究中,我们提出了一种在动态图上更新 PageRank 分数的无锁算法。首先,我们介绍了动态前沿(DF)方法,它能以最小的开销识别并处理可能改变 PageRank 的顶点。随后,我们将 DF 与我们的无锁容错 PageRank($DF_{LF}$)相结合,在两个阶段之间加入了线程间的帮助机制。实验结果表明,$DF_{LF}$ 不仅消除了迭代障碍的等待时间,还能承受随机线程的延迟和崩溃。平均而言,它比无锁的 Naive-dynamic PageRank($ND_{LF}$)快 4.6 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1