A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin

Abdul Jabbar, Syed Qaisar Jalil
{"title":"A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin","authors":"Abdul Jabbar, Syed Qaisar Jalil","doi":"arxiv-2407.18334","DOIUrl":null,"url":null,"abstract":"This study evaluates the performance of 41 machine learning models, including\n21 classifiers and 20 regressors, in predicting Bitcoin prices for algorithmic\ntrading. By examining these models under various market conditions, we\nhighlight their accuracy, robustness, and adaptability to the volatile\ncryptocurrency market. Our comprehensive analysis reveals the strengths and\nlimitations of each model, providing critical insights for developing effective\ntrading strategies. We employ both machine learning metrics (e.g., Mean\nAbsolute Error, Root Mean Squared Error) and trading metrics (e.g., Profit and\nLoss percentage, Sharpe Ratio) to assess model performance. Our evaluation\nincludes backtesting on historical data, forward testing on recent unseen data,\nand real-world trading scenarios, ensuring the robustness and practical\napplicability of our models. Key findings demonstrate that certain models, such\nas Random Forest and Stochastic Gradient Descent, outperform others in terms of\nprofit and risk management. These insights offer valuable guidance for traders\nand researchers aiming to leverage machine learning for cryptocurrency trading.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the performance of 41 machine learning models, including 21 classifiers and 20 regressors, in predicting Bitcoin prices for algorithmic trading. By examining these models under various market conditions, we highlight their accuracy, robustness, and adaptability to the volatile cryptocurrency market. Our comprehensive analysis reveals the strengths and limitations of each model, providing critical insights for developing effective trading strategies. We employ both machine learning metrics (e.g., Mean Absolute Error, Root Mean Squared Error) and trading metrics (e.g., Profit and Loss percentage, Sharpe Ratio) to assess model performance. Our evaluation includes backtesting on historical data, forward testing on recent unseen data, and real-world trading scenarios, ensuring the robustness and practical applicability of our models. Key findings demonstrate that certain models, such as Random Forest and Stochastic Gradient Descent, outperform others in terms of profit and risk management. These insights offer valuable guidance for traders and researchers aiming to leverage machine learning for cryptocurrency trading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比特币算法交易的机器学习模型综合分析
本研究评估了 41 个机器学习模型(包括 21 个分类器和 20 个回归器)在预测算法交易的比特币价格方面的性能。通过研究这些模型在各种市场条件下的表现,我们强调了它们的准确性、稳健性和对波动的加密货币市场的适应性。我们的综合分析揭示了每个模型的优势和局限性,为制定有效的交易策略提供了重要见解。我们采用机器学习指标(如平均绝对误差、均方根误差)和交易指标(如盈亏百分比、夏普比率)来评估模型性能。我们的评估包括历史数据的回溯测试、近期未见数据的正向测试以及真实交易场景,从而确保模型的稳健性和实际应用性。主要研究结果表明,某些模型,如随机森林和随机梯度下降模型,在利润和风险管理方面优于其他模型。这些见解为旨在利用机器学习进行加密货币交易的交易者和研究人员提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal position-building strategies in Competition MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model Logarithmic regret in the ergodic Avellaneda-Stoikov market making model A Financial Time Series Denoiser Based on Diffusion Model Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1