{"title":"Updated delegated proof of stake and Nash equilibrium: A mining pool game model for blockchain network","authors":"Namratha M, Kunwar Singh","doi":"10.1002/cpe.8224","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the present era, blockchain technology has an extensive variety of uses in the financial, marketing, and so forth. The performance and security of the blockchain system are directly affected by the consensus algorithm. Since there are 30 consensus techniques like proof of stake, delegated proof of stake, and proof of work, and so forth in the previous years, the operating efficiency, safety, and stability still lag behind the basic requirements. To this concern, this research manuscript introduces a novel consensus mechanism-based game model using upgraded delegated proof of stake (UDPoS) and Nash equilibrium (NE) that is UDPoS-NE. In a blockchain network powered by UDPoS, blockchain miners provide computing power to publish blocks. Due to a single miner's limited Computing Power (CP), miners frequently join mining pools and divide the pool's profits in accordance with their respective contributions. However, certain miners launch block-withholding attacks that lead to loss the computer power and endanger the blockchain network's effectiveness. Therefore, NE is used to calculate cooperative game solutions and optimize policy decisions of the miners to frustrate the block withholding attack by the influence of stakes and computing power on producing blocks. Using this mechanism, efficiency, and stability in the consensus process is achieved through the combined influence of computing resources and stakes on block generation. Finally, the suggested model's applicability and validity are confirmed with a throughput (600 TPS), delay (3 s), and energy consumption (<100 KWh) for 10 nodes and processing time (0.9 s) for 200 nodes.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 23","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8224","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the present era, blockchain technology has an extensive variety of uses in the financial, marketing, and so forth. The performance and security of the blockchain system are directly affected by the consensus algorithm. Since there are 30 consensus techniques like proof of stake, delegated proof of stake, and proof of work, and so forth in the previous years, the operating efficiency, safety, and stability still lag behind the basic requirements. To this concern, this research manuscript introduces a novel consensus mechanism-based game model using upgraded delegated proof of stake (UDPoS) and Nash equilibrium (NE) that is UDPoS-NE. In a blockchain network powered by UDPoS, blockchain miners provide computing power to publish blocks. Due to a single miner's limited Computing Power (CP), miners frequently join mining pools and divide the pool's profits in accordance with their respective contributions. However, certain miners launch block-withholding attacks that lead to loss the computer power and endanger the blockchain network's effectiveness. Therefore, NE is used to calculate cooperative game solutions and optimize policy decisions of the miners to frustrate the block withholding attack by the influence of stakes and computing power on producing blocks. Using this mechanism, efficiency, and stability in the consensus process is achieved through the combined influence of computing resources and stakes on block generation. Finally, the suggested model's applicability and validity are confirmed with a throughput (600 TPS), delay (3 s), and energy consumption (<100 KWh) for 10 nodes and processing time (0.9 s) for 200 nodes.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.