The Relationship Between Thermal Conductivity and Engineering Properties of Basalts with Increasing Serpentinization Degree

IF 1.5 4区 工程技术 Q3 METALLURGY & METALLURGICAL ENGINEERING Mining, Metallurgy & Exploration Pub Date : 2024-07-30 DOI:10.1007/s42461-024-01038-7
Erdogan Timurkaynak, Hasan Kolayli, Kadir Karaman, Yasar Cakir
{"title":"The Relationship Between Thermal Conductivity and Engineering Properties of Basalts with Increasing Serpentinization Degree","authors":"Erdogan Timurkaynak, Hasan Kolayli, Kadir Karaman, Yasar Cakir","doi":"10.1007/s42461-024-01038-7","DOIUrl":null,"url":null,"abstract":"<p>The thermal conductivity (TC) of rocks is an essential parameter for geothermal investigations and heat transport modeling under the ground. Although Turkey has a remarkable geothermal potential, investigation of rocks’ thermal conductivity has been very limited. The aim of this study is to investigate the relationships between TC and significant engineering parameters (uniaxial compressive strength (UCS), point load index (PLI), ultrasonic pulse velocity (UPV), indirect tensile strength (BTS), Schmidt hammer rebound number (<i>R</i>), Leeb hardness (<i>H</i><sub><i>L</i></sub>), density, and apparent porosity) of basalt samples. In addition to the engineering properties, TC correlated with the serpentinization of olivine and some chemical elements (O and Si). The study area was divided into three categories (A1, M2, and M3) according to the alteration zones with stratigraphically different levels. Petrographic thin section studies, SEM (scanning electron microscopy), and EDS (energy dispersive spectroscopy) analyses were also carried out to recognize the particles. This study demonstrated that the thermal conductivity values depend on the engineering properties of basalts due to the progressive serpentinization of olivine minerals. Serpentinization of olivine was found approximately 10% for A1 basalts, while this value was around 80% for M3. A strong relation was found between TC and serpentinization of olivine minerals for all samples and average A1, M2, and M3. The most significant factors affecting the serpentinization are proximity to the volcano cone and fault contact.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01038-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal conductivity (TC) of rocks is an essential parameter for geothermal investigations and heat transport modeling under the ground. Although Turkey has a remarkable geothermal potential, investigation of rocks’ thermal conductivity has been very limited. The aim of this study is to investigate the relationships between TC and significant engineering parameters (uniaxial compressive strength (UCS), point load index (PLI), ultrasonic pulse velocity (UPV), indirect tensile strength (BTS), Schmidt hammer rebound number (R), Leeb hardness (HL), density, and apparent porosity) of basalt samples. In addition to the engineering properties, TC correlated with the serpentinization of olivine and some chemical elements (O and Si). The study area was divided into three categories (A1, M2, and M3) according to the alteration zones with stratigraphically different levels. Petrographic thin section studies, SEM (scanning electron microscopy), and EDS (energy dispersive spectroscopy) analyses were also carried out to recognize the particles. This study demonstrated that the thermal conductivity values depend on the engineering properties of basalts due to the progressive serpentinization of olivine minerals. Serpentinization of olivine was found approximately 10% for A1 basalts, while this value was around 80% for M3. A strong relation was found between TC and serpentinization of olivine minerals for all samples and average A1, M2, and M3. The most significant factors affecting the serpentinization are proximity to the volcano cone and fault contact.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着蛇纹石化程度的增加,玄武岩的导热性与工程特性之间的关系
岩石的导热系数(TC)是地热勘测和地下热传输建模的重要参数。虽然土耳其地热潜力巨大,但对岩石导热性的研究却非常有限。本研究旨在调查 TC 与玄武岩样本的重要工程参数(单轴抗压强度 (UCS)、点荷载指数 (PLI)、超声波脉冲速度 (UPV)、间接抗拉强度 (BTS)、施密特锤回弹数 (R)、里氏硬度 (HL)、密度和表观孔隙率)之间的关系。除工程特性外,TC 还与橄榄石的蛇纹石化和某些化学元素(O 和 Si)相关。根据不同地层的蚀变带,研究区域被分为三类(A1、M2 和 M3)。此外,还进行了岩相薄片研究、扫描电子显微镜(SEM)和能量色散光谱(EDS)分析,以识别颗粒。这项研究表明,由于橄榄石矿物逐渐蛇纹石化,热导率值取决于玄武岩的工程特性。A1 玄武岩中橄榄石的蛇纹石化率约为 10%,而 M3 玄武岩的蛇纹石化率约为 80%。在所有样品和平均值 A1、M2 和 M3 中,发现 TC 与橄榄石矿物蛇纹石化之间存在密切关系。影响蛇纹石化的最重要因素是靠近火山锥和断层接触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mining, Metallurgy & Exploration
Mining, Metallurgy & Exploration Materials Science-Materials Chemistry
CiteScore
3.50
自引率
10.50%
发文量
177
期刊介绍: The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society. The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.
期刊最新文献
Prediction of Backbreak in Surface Production Blasting Using 3-Dimensional Finite Element Modeling and 3-Dimensional Nearfield Vibration Modeling Improving Feldspar Flotation Using CTAB As Amine Collector (Part Two) Research on Vibrating Screen Screening Technology and Method Based on DEM: a Review Slope Stability Analysis of Opencast Mine Dump using the Limit Equilibrium Method—a Case Study Spatial Clustering of Primary Geochemical Halos Using Unsupervised Machine Learning in Sari Gunay Gold Deposit, Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1