A weakest link theory‐based probabilistic fatigue life prediction method for the turbine disc considering the influence of the number of critical sections

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL Quality and Reliability Engineering International Pub Date : 2024-07-29 DOI:10.1002/qre.3629
Tianxing Wang, Yan‐Feng Li, Hong‐Zhong Huang, Song Bai
{"title":"A weakest link theory‐based probabilistic fatigue life prediction method for the turbine disc considering the influence of the number of critical sections","authors":"Tianxing Wang, Yan‐Feng Li, Hong‐Zhong Huang, Song Bai","doi":"10.1002/qre.3629","DOIUrl":null,"url":null,"abstract":"This study utilizes the rank correlation coefficient to examine the multi‐site failure correlation of turbine discs. Drawing from the stress‐strength interference model, reliability models both with and without factoring in the multi‐site failure correlation are constructed. Furthermore, the weakest link theory (WLT) within the context of the Weibull distribution function is invoked to develop a model for predicting the fatigue life of turbine discs, taking into account the quantity of critical sections. The variability in the low cycle fatigue (LCF) of turbine discs is scrutinized, leading to the formulation of a probabilistic fatigue life prediction method for these discs. When comparing theoretical values with experimental ones, it becomes evident that factoring in the multi‐site failure correlation significantly enhances the accuracy of turbine disc life predictions.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3629","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes the rank correlation coefficient to examine the multi‐site failure correlation of turbine discs. Drawing from the stress‐strength interference model, reliability models both with and without factoring in the multi‐site failure correlation are constructed. Furthermore, the weakest link theory (WLT) within the context of the Weibull distribution function is invoked to develop a model for predicting the fatigue life of turbine discs, taking into account the quantity of critical sections. The variability in the low cycle fatigue (LCF) of turbine discs is scrutinized, leading to the formulation of a probabilistic fatigue life prediction method for these discs. When comparing theoretical values with experimental ones, it becomes evident that factoring in the multi‐site failure correlation significantly enhances the accuracy of turbine disc life predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最薄弱环节理论的涡轮盘概率疲劳寿命预测方法,考虑到关键部分数量的影响
本研究利用秩相关系数来检验涡轮盘的多点失效相关性。借鉴应力-强度干涉模型,构建了考虑和不考虑多部位失效相关性的可靠性模型。此外,考虑到关键部分的数量,在 Weibull 分布函数的背景下引用了最弱联系理论 (WLT),以建立预测涡轮盘疲劳寿命的模型。对涡轮机盘低循环疲劳(LCF)的变化进行了仔细研究,从而为这些盘制定了概率疲劳寿命预测方法。将理论值与实验值进行比较后发现,考虑到多部位失效相关性可显著提高涡轮盘寿命预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
期刊最新文献
A probabilistic uncertain linguistic approach for FMEA‐based risk assessment A resilient S2 monitoring chart with novel outlier detectors Dynamic predictive maintenance strategy for multi‐component system based on LSTM and hierarchical clustering Monitoring defects on products' surface by incorporating scan statistics into process monitoring procedures Enhanced health states recognition for electric rudder system using optimized twin support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1