Co-upcycling of Plastic Waste and Biowaste via Tandem Transesterification Reactions

JACS Au Pub Date : 2024-07-30 DOI:10.1021/jacsau.4c00459
Jiaquan Li, Xingmo Zhang, Xingxu Liu, Xiuping Liao, Jun Huang, Yijiao Jiang
{"title":"Co-upcycling of Plastic Waste and Biowaste via Tandem Transesterification Reactions","authors":"Jiaquan Li, Xingmo Zhang, Xingxu Liu, Xiuping Liao, Jun Huang, Yijiao Jiang","doi":"10.1021/jacsau.4c00459","DOIUrl":null,"url":null,"abstract":"Polyethylene terephthalate (PET) and glycerol are prevalent forms of plastic and biowaste, necessitating facile and effective strategies for their upcycling treatment. Herein, we present an innovative one-pot reaction system for the concurrent depolymerization of PET plastics and the transesterification of glycerol into dimethyl terephthalate (DMT), a valuable feedstock in polymer manufacturing. This process occurs in the presence of methyl acetate (MA), a byproduct of the industrial production of acetic acid. The upcycling of biowaste glycerol into glycerol acetates renders them valuable additives for application in both the biofuel and chemical industries. This integrated reaction system enhances the conversion of glycerol to acetins compared with the singular transesterification of glycerol. In this approach, cost-effective catalysts, based on perovskite-structured CaMnO<sub>3</sub>, were employed. The catalyst undergoes in situ reconstruction in the tandem PET/glycerol/MA system due to glycerolation between the metal oxides and glycerol/acetins. This process results in the formation of small metal oxide nanoparticles confined in amorphous metal glycerolates, thereby enhancing the PET depolymerization efficiency. The optimized coupled reaction system can achieve a product yield exceeding 70% for glycerol acetates and 68% for PET monomers. This research introduces a tandem pathway for the simultaneous upcycling of PET plastic waste and biowaste glycerol with minimal feedstock input and maximal reactant utilization efficiency, promising both economic advantages and positive environmental impacts.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethylene terephthalate (PET) and glycerol are prevalent forms of plastic and biowaste, necessitating facile and effective strategies for their upcycling treatment. Herein, we present an innovative one-pot reaction system for the concurrent depolymerization of PET plastics and the transesterification of glycerol into dimethyl terephthalate (DMT), a valuable feedstock in polymer manufacturing. This process occurs in the presence of methyl acetate (MA), a byproduct of the industrial production of acetic acid. The upcycling of biowaste glycerol into glycerol acetates renders them valuable additives for application in both the biofuel and chemical industries. This integrated reaction system enhances the conversion of glycerol to acetins compared with the singular transesterification of glycerol. In this approach, cost-effective catalysts, based on perovskite-structured CaMnO3, were employed. The catalyst undergoes in situ reconstruction in the tandem PET/glycerol/MA system due to glycerolation between the metal oxides and glycerol/acetins. This process results in the formation of small metal oxide nanoparticles confined in amorphous metal glycerolates, thereby enhancing the PET depolymerization efficiency. The optimized coupled reaction system can achieve a product yield exceeding 70% for glycerol acetates and 68% for PET monomers. This research introduces a tandem pathway for the simultaneous upcycling of PET plastic waste and biowaste glycerol with minimal feedstock input and maximal reactant utilization efficiency, promising both economic advantages and positive environmental impacts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过串联酯化反应实现塑料废物和生物废物的共同循环利用
聚对苯二甲酸乙二醇酯(PET)和甘油是塑料和生物废弃物的普遍形式,因此有必要采取简便有效的策略对其进行升级再循环处理。在此,我们提出了一种创新的单锅反应系统,用于同时解聚 PET 塑料和将甘油酯交换成聚合物生产中的重要原料对苯二甲酸二甲酯(DMT)。这一过程是在醋酸甲酯(MA)存在的情况下进行的,醋酸甲酯是醋酸工业生产的副产品。将生物废弃甘油升级回收为醋酸甘油酯,使其成为生物燃料和化工行业的重要添加剂。与单一的甘油酯交换反应相比,这种综合反应系统提高了甘油到醋酸酯的转化率。在这一方法中,采用了基于过氧化物结构 CaMnO3 的高性价比催化剂。由于金属氧化物和甘油/乙炔之间的甘油化作用,催化剂在串联 PET/甘油/MA 体系中发生了原位重构。这一过程导致在无定形金属甘油酯中形成小的金属氧化物纳米颗粒,从而提高了 PET 的解聚效率。经过优化的耦合反应系统可使甘油醋酸酯的产品产率超过 70%,PET 单体的产品产率超过 68%。这项研究为 PET 塑料废料和生物废料甘油的同时升级再循环引入了串联途径,具有最小的原料投入和最高的反应物利用效率,有望带来经济优势和积极的环境影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signaling Mechanism of Cuproptosis Activating cGAS-STING Immune Pathway Decoupling Electrolytic Water Splitting by an Oxygen-Mediating Process N2 Dissociation vs Reversible 1,2-Methyl Migration in PCNHCP Cobalt(I) Complexes in the Stereoselective Isomerization (E/Z) of Allyl Ethers Selectivity of Complex Coacervation in Multiprotein Mixtures Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1