{"title":"(\n 1\n ,\n p\n )\n \n $(1,p)$\n -Sobolev spaces based on strongly local Dirichlet forms","authors":"Kazuhiro Kuwae","doi":"10.1002/mana.202400025","DOIUrl":null,"url":null,"abstract":"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E},D(\\mathcal {E}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(X;\\mathfrak {m})$</annotation>\n </semantics></math> admitting minimal <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math>-dominant measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>, we construct a natural <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-energy functional <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X;\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>]</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n <mo>[</mo>\n </mrow>\n <annotation>$p\\in]1,+\\infty [$</annotation>\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>. As a consequence, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-capacity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cap</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>${\\rm Cap}_{1,p}(A)&lt;\\infty$</annotation>\n </semantics></math> for open set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> admits an equilibrium potential <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>∈</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_A\\in D(\\mathcal {E}^{\\,p})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\le e_A\\le 1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e_A=1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of quasi-regular strongly local Dirichlet form on admitting minimal -dominant measure , we construct a natural -energy functional on and -Sobolev space for . In this paper, we establish the Clarkson-type inequality for . As a consequence, is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of , we prove that (generalized) normal contraction operates on , which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that -capacity for open set admits an equilibrium potential with -a.e. and -a.e. on .