( 1 , p ) $(1,p)$ -Sobolev spaces based on strongly local Dirichlet forms

Pub Date : 2024-07-29 DOI:10.1002/mana.202400025
Kazuhiro Kuwae
{"title":"(\n 1\n ,\n p\n )\n \n $(1,p)$\n -Sobolev spaces based on strongly local Dirichlet forms","authors":"Kazuhiro Kuwae","doi":"10.1002/mana.202400025","DOIUrl":null,"url":null,"abstract":"<p>In the framework of quasi-regular strongly local Dirichlet form <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E},D(\\mathcal {E}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(X;\\mathfrak {m})$</annotation>\n </semantics></math> admitting minimal <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math>-dominant measure <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>, we construct a natural <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-energy functional <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>;</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X;\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>]</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n <mo>[</mo>\n </mrow>\n <annotation>$p\\in]1,+\\infty [$</annotation>\n </semantics></math>. In this paper, we establish the Clarkson-type inequality for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>. As a consequence, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math> is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mo>∥</mo>\n <mo>·</mo>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H^{1,p}(X),\\Vert \\cdot \\Vert _{H^{1,p}})$</annotation>\n </semantics></math>, we prove that (generalized) normal contraction operates on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {E}^{\\,p},D(\\mathcal {E}^{\\,p}))$</annotation>\n </semantics></math>, which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,p)$</annotation>\n </semantics></math>-capacity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cap</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>${\\rm Cap}_{1,p}(A)&amp;lt;\\infty$</annotation>\n </semantics></math> for open set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> admits an equilibrium potential <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>∈</mo>\n <mi>D</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>E</mi>\n <mrow>\n <mspace></mspace>\n <mi>p</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_A\\in D(\\mathcal {E}^{\\,p})$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\le e_A\\le 1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>A</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e_A=1$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-a.e. on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of quasi-regular strongly local Dirichlet form ( E , D ( E ) ) $(\mathcal {E},D(\mathcal {E}))$ on L 2 ( X ; m ) $L^2(X;\mathfrak {m})$ admitting minimal E $\mathcal {E}$ -dominant measure μ $\mu$ , we construct a natural p $p$ -energy functional ( E p , D ( E p ) ) $(\mathcal {E}^{\,p},D(\mathcal {E}^{\,p}))$ on L p ( X ; m ) $L^p(X;\mathfrak {m})$ and ( 1 , p ) $(1,p)$ -Sobolev space ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ for p ] 1 , + [ $p\in]1,+\infty [$ . In this paper, we establish the Clarkson-type inequality for ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ . As a consequence, ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of ( H 1 , p ( X ) , · H 1 , p ) $(H^{1,p}(X),\Vert \cdot \Vert _{H^{1,p}})$ , we prove that (generalized) normal contraction operates on ( E p , D ( E p ) ) $(\mathcal {E}^{\,p},D(\mathcal {E}^{\,p}))$ , which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that ( 1 , p ) $(1,p)$ -capacity Cap 1 , p ( A ) < ${\rm Cap}_{1,p}(A)&lt;\infty$ for open set A $A$ admits an equilibrium potential e A D ( E p ) $e_A\in D(\mathcal {E}^{\,p})$ with 0 e A 1 $0\le e_A\le 1$ m $\mathfrak {m}$ -a.e. and e A = 1 $e_A=1$ m $\mathfrak {m}$ -a.e. on A $A$ .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于强局部 Dirichlet 形式的 (1,p)$(1,p)$-Sobolev 空间
在准规则强局部 Dirichlet 形式的框架内,我们在容许最小-主导度量的 上和-Sobolev 空间中为 .在本文中,我们为 .因此, 是一个均匀凸的巴拿赫空间,因此它是反身的。基于Ⅳ的反身性,我们证明了(广义)法向收缩作用于Ⅳ,这已经在各种具体环境中得到证明,但还没有在这样一个一般框架中得到证明。此外,我们还证明了开集的-容量在-a.e.和-a.e.上具有均衡势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1