Existence and concentration behavior of normalized solutions for critical Kirchhoff type equations with general nonlinearities

Shuyao Lu, Anmin Mao
{"title":"Existence and concentration behavior of normalized solutions for critical Kirchhoff type equations with general nonlinearities","authors":"Shuyao Lu, Anmin Mao","doi":"10.1007/s00033-023-02178-4","DOIUrl":null,"url":null,"abstract":"<p>We consider the following Kirchhoff equation in the Sobolev critical case with combined power nonlinearities </p><p> having prescribed mass </p><span>$$\\begin{aligned} \\mathop {\\int }\\limits _{{\\mathbb {R}}^{3}}|u|^2 =c^2, \\end{aligned}$$</span><p>where <span>\\(a,\\ c,\\ \\mu &gt;0\\)</span> are positive constants, <span>\\(b&gt;0\\)</span> is a positive parameter, <span>\\(2&lt;q&lt;{\\bar{p}}:=2+\\frac{8}{3}\\)</span> which is <span>\\(L^{2}\\)</span>-critical exponent. For the <span>\\(L^{2}\\)</span>-subcritical case <span>\\(2&lt;q&lt;\\frac{10}{3}\\)</span> and Sobolev critical case, Li et al. (2021) proved that <span>\\(({\\mathcal {K}})\\)</span> has a solution which is ground state solution and corresponds to local minima of the associated energy functional. Here we extend the result in Li et al. (2021) by proving that <span>\\(({\\mathcal {K}})\\)</span> has the second solution which is not a ground state and is located at a mountain-pass level of the energy functional. Meanwhile, let <span>\\(u_{b}\\)</span> are normalized solutions of mountain-pass type to <span>\\(({\\mathcal {K}})\\)</span>, then <span>\\(u_{b}\\rightarrow u\\)</span> in <span>\\(H^{1}({\\mathbb {R}}^{3})\\)</span> as <span>\\(b\\rightarrow 0\\)</span> up to a subsequence, where <span>\\(u\\in H^{1}({\\mathbb {R}}^{3})\\)</span> is a normalized solution of mountain-pass type to </p><span>$$\\begin{aligned} -a\\triangle u =\\lambda u+ \\mu |u|^{q-2}u +|u|^{4}u\\ \\ \\ \\ \\ \\ \\ \\textrm{in} \\ {{\\mathbb {R}}^{3}}. \\end{aligned}$$</span><p>Our results also extend the results of Soave (J Differ Equ 269:6941–6987, 2020; J Funct Anal 279:108610, 2020).</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02178-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following Kirchhoff equation in the Sobolev critical case with combined power nonlinearities

having prescribed mass

$$\begin{aligned} \mathop {\int }\limits _{{\mathbb {R}}^{3}}|u|^2 =c^2, \end{aligned}$$

where \(a,\ c,\ \mu >0\) are positive constants, \(b>0\) is a positive parameter, \(2<q<{\bar{p}}:=2+\frac{8}{3}\) which is \(L^{2}\)-critical exponent. For the \(L^{2}\)-subcritical case \(2<q<\frac{10}{3}\) and Sobolev critical case, Li et al. (2021) proved that \(({\mathcal {K}})\) has a solution which is ground state solution and corresponds to local minima of the associated energy functional. Here we extend the result in Li et al. (2021) by proving that \(({\mathcal {K}})\) has the second solution which is not a ground state and is located at a mountain-pass level of the energy functional. Meanwhile, let \(u_{b}\) are normalized solutions of mountain-pass type to \(({\mathcal {K}})\), then \(u_{b}\rightarrow u\) in \(H^{1}({\mathbb {R}}^{3})\) as \(b\rightarrow 0\) up to a subsequence, where \(u\in H^{1}({\mathbb {R}}^{3})\) is a normalized solution of mountain-pass type to

$$\begin{aligned} -a\triangle u =\lambda u+ \mu |u|^{q-2}u +|u|^{4}u\ \ \ \ \ \ \ \textrm{in} \ {{\mathbb {R}}^{3}}. \end{aligned}$$

Our results also extend the results of Soave (J Differ Equ 269:6941–6987, 2020; J Funct Anal 279:108610, 2020).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有一般非线性的临界基尔霍夫型方程的归一化解的存在性和集中行为
我们考虑以下基尔霍夫方程在索波列夫临界情况下与具有规定质量的组合功率非线性问题 $$\begin{aligned}\mathop {\int }\limits _{{mathbb {R}}^{3}}|u|^2 =c^2, end{aligned}$$其中\(a,\c,\mu >0\)是正常数,\(b>0\)是正参数,\(2<q<{/bar{p}}:=2+\frac{8}{3}\) 是临界指数。对于\(L^{2}\)-次临界情况\(2<q<\frac{10}{3}\)和Sobolev临界情况,Li等人(2021年)证明了\(({\mathcal {K}})\)有一个解是基态解,并且对应于相关能量函数的局部最小值。在这里,我们扩展了 Li 等人(2021)的结果,证明 \(({\mathcal {K}}) 有第二个解,它不是基态解,位于能量函数的山口水平。同时,设\(u_{b}\)是\(({\mathcal {K}}})\)的山传递类型的归一化解,那么\(u_{b}\rightarrow u\) 在\(H^{1}({\mathbb {R}}^{3})\) 中为\(b\rightarrow 0\) 直到子序列、其中 \(u\in H^{1}({\mathbb {R}^{3})是$$\begin{aligned}-a\triangle u =\lambda u+ \mu |u|^{q-2}u +|u|^{4}u \ \ \textrm{in} 的山越类型的归一化解。}\ {{mathbb {R}}^{3}}.\end{aligned}$$我们的结果也扩展了 Soave 的结果(J Differ Equ 269:6941-6987, 2020; J Funct Anal 279:108610, 2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractional wave equation with irregular mass and dissipation On a quasilinear two-species chemotaxis system with general kinetic functions and interspecific competition Multiplicity and concentration behavior of solutions for magnetic Choquard equation with critical growth Eventual smoothness in a chemotaxis-Navier–Stokes system with indirect signal production involving Dirichlet signal boundary condition Boundedness and finite-time blow-up in a Keller–Segel chemotaxis-growth system with flux limitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1