Ocean component of the first operational version of Hurricane Analysis and Forecast System: Evaluation of HYbrid Coordinate Ocean Model and hurricane feedback forecasts
Hyun-Sook Kim, Bin Liu, Biju Thomas, Daniel Rosen, Weiguo Wang, Andrew Hazelton, Zhan Zhang, Xueijin Zhang, Avichal Mehra
{"title":"Ocean component of the first operational version of Hurricane Analysis and Forecast System: Evaluation of HYbrid Coordinate Ocean Model and hurricane feedback forecasts","authors":"Hyun-Sook Kim, Bin Liu, Biju Thomas, Daniel Rosen, Weiguo Wang, Andrew Hazelton, Zhan Zhang, Xueijin Zhang, Avichal Mehra","doi":"10.3389/feart.2024.1399409","DOIUrl":null,"url":null,"abstract":"The first operational version of the coupled Hurricane Analysis and Forecast System (HAFSv1) launched in 2023 consists of the HYbrid Coordinate Ocean Model (HYCOM) and finite-volume cubed-sphere (FV3) dynamic atmosphere model. This system is a product of efforts involving improvements and updates over a 4-year period (2019–2022) through extensive collaborations between the Environmental Modeling Center at the US National Centers for Environmental Prediction (NCEP) and NOAA Atlantic Oceanography and Meteorology Laboratory. To provide two sets of numerical guidance, the initial operational capability of HAFSv1 was configured to two systems—HFSA and HFSB. In this study, we present in-depth analysis of the forecast skills of the upper ocean that was co-evolved by the HFSA and HFSB. We chose hurricane Laura (2020) as an example to demonstrate the interactions between the storm and oceanic mesoscale features. Comparisons performed with the available <jats:italic>in situ</jats:italic> observations from gliders as well as Argos and National Data Buoy Center moorings show that the HYCOM simulations have better agreement for weak winds than high winds (greater than Category 2). The skill metrics indicate that the model sea-surface temperature (SST) and mixed layer depth (MLD) have a relatively low correlation. The SST, MLD, mixed layer temperature (MLT), and ocean heat content (OHC) are negatively biased. For high winds, SST and MLT are more negative, while MLD is closer to the observations with improvements of about 8%–19%. The OHC discrepancy is proportional to predicted wind intensity. Contrarily, the mixed layer salinity (MLS) uncertainties are smaller and positive for higher winds, probably owing to the higher MLD. The less-negative bias of MLD for high winds implies that the wind-force mixing is less effective owing to the higher MLD and high buoyancy stability (approx. 1.5–1.7 times) than the observations. The heat budget analysis suggests that the maximum heat loss by hurricane Laura was <jats:italic>O</jats:italic>(&lt; 3°C per day). The main contributor here is advection, followed by entrainment, which act against or with each other depending on the storm quadrant. We also found relatively large unaccountable heat residuals for the in-storm period, and the residuals notably led the heat tendency, meaning that further improvements of the subscale simulations are warranted. In summary, HYCOM simulations showed no systematic differences forced by either HFSA or HFSB.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1399409","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The first operational version of the coupled Hurricane Analysis and Forecast System (HAFSv1) launched in 2023 consists of the HYbrid Coordinate Ocean Model (HYCOM) and finite-volume cubed-sphere (FV3) dynamic atmosphere model. This system is a product of efforts involving improvements and updates over a 4-year period (2019–2022) through extensive collaborations between the Environmental Modeling Center at the US National Centers for Environmental Prediction (NCEP) and NOAA Atlantic Oceanography and Meteorology Laboratory. To provide two sets of numerical guidance, the initial operational capability of HAFSv1 was configured to two systems—HFSA and HFSB. In this study, we present in-depth analysis of the forecast skills of the upper ocean that was co-evolved by the HFSA and HFSB. We chose hurricane Laura (2020) as an example to demonstrate the interactions between the storm and oceanic mesoscale features. Comparisons performed with the available in situ observations from gliders as well as Argos and National Data Buoy Center moorings show that the HYCOM simulations have better agreement for weak winds than high winds (greater than Category 2). The skill metrics indicate that the model sea-surface temperature (SST) and mixed layer depth (MLD) have a relatively low correlation. The SST, MLD, mixed layer temperature (MLT), and ocean heat content (OHC) are negatively biased. For high winds, SST and MLT are more negative, while MLD is closer to the observations with improvements of about 8%–19%. The OHC discrepancy is proportional to predicted wind intensity. Contrarily, the mixed layer salinity (MLS) uncertainties are smaller and positive for higher winds, probably owing to the higher MLD. The less-negative bias of MLD for high winds implies that the wind-force mixing is less effective owing to the higher MLD and high buoyancy stability (approx. 1.5–1.7 times) than the observations. The heat budget analysis suggests that the maximum heat loss by hurricane Laura was O(< 3°C per day). The main contributor here is advection, followed by entrainment, which act against or with each other depending on the storm quadrant. We also found relatively large unaccountable heat residuals for the in-storm period, and the residuals notably led the heat tendency, meaning that further improvements of the subscale simulations are warranted. In summary, HYCOM simulations showed no systematic differences forced by either HFSA or HFSB.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.