Zijie Yu, Furen Deng, Shijie Sun, Chenhui Niu, Jixia Li, Fengquan Wu, Wei-Yang Wang, Yougang Wang, Shifan Zuo, Lin Shu, Jie Hao, Xiaohui Liu, Reza Ansari, Ue-Li Pen, Albert Stebbins, Peter Timbie, Xuelei Chen
{"title":"The FRB-searching Pipeline of the Tianlai Cylinder Pathfinder Array","authors":"Zijie Yu, Furen Deng, Shijie Sun, Chenhui Niu, Jixia Li, Fengquan Wu, Wei-Yang Wang, Yougang Wang, Shifan Zuo, Lin Shu, Jie Hao, Xiaohui Liu, Reza Ansari, Ue-Li Pen, Albert Stebbins, Peter Timbie, Xuelei Chen","doi":"10.1088/1674-4527/ad5b35","DOIUrl":null,"url":null,"abstract":"This paper presents the design, calibration, and survey strategy of the Fast Radio Burst (FRB) digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array. The array, consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds, is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere. The FRB digital backend enables the formation of 96 digital beams, effectively covering an area of approximately 40 square degrees with the 3 dB beam. Our pipeline demonstrates the capability to conduct an automatic search of FRBs, detecting at quasi-real-time and classifying FRB candidates automatically. The current FRB searching pipeline has an overall recall rate of 88%. During the commissioning phase, we successfully detected signals emitted by four well-known pulsars: PSR B0329+54, B2021+51, B0823+26, and B2020+28. We report the first discovery of an FRB by our array, designated as FRB 20220414A. We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"21 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad5b35","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design, calibration, and survey strategy of the Fast Radio Burst (FRB) digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array. The array, consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds, is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere. The FRB digital backend enables the formation of 96 digital beams, effectively covering an area of approximately 40 square degrees with the 3 dB beam. Our pipeline demonstrates the capability to conduct an automatic search of FRBs, detecting at quasi-real-time and classifying FRB candidates automatically. The current FRB searching pipeline has an overall recall rate of 88%. During the commissioning phase, we successfully detected signals emitted by four well-known pulsars: PSR B0329+54, B2021+51, B0823+26, and B2020+28. We report the first discovery of an FRB by our array, designated as FRB 20220414A. We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods