Basu Dev Kafle, Anthony O. Adesemoye, Henry Y. Fadamiro
{"title":"Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids","authors":"Basu Dev Kafle, Anthony O. Adesemoye, Henry Y. Fadamiro","doi":"10.1007/s00049-024-00410-9","DOIUrl":null,"url":null,"abstract":"<div><p>The chemical composition of cuticular hydrocarbons differs qualitatively and quantitatively among insect species. These differences convey species-specific information about host suitability to foraging parasitoids, enabling them to discriminate between the host and non-host species. Specialist parasitoids that parasitize fewer host species are predicted to use host-specific cues compared to generalists that have evolved to use common cues present in multiple potential host species. Here, we tested the above hypothesis by evaluating two parasitoids with varying levels of host specificity, <i>Microplitis croceipe</i>s (specialist) and <i>Cotesia marginive</i>ntris (generalist), for their responses to cuticular extracts of three caterpillar species, <i>Chloridea virescens</i>, <i>Helicoverpa zea</i>, and <i>Spodoptera exigua</i>. First, we compared the cuticular profiles of the three caterpillar species and found that <i>C. virescens</i> and <i>H. zea</i> were qualitatively similar in cuticular composition, whereas <i>S. exigua</i> differed qualitatively and quantitatively from the other two. In contact bioassays, both parasitoid species were behaviorally arrested by the host cuticular extracts, with specialist <i>M. croceipes</i> able to discriminate between the cuticular extracts of its host and non-host caterpillar species. Assessment with the coupled gas chromatography-electroantennogram detection (GC-EAD) revealed qualitative and quantitative differences in parasitoids’ antennal responses to the components of cuticular extracts of host species, with <i>M. croceipes</i> showing greater antennal response than generalist <i>C. marginiventris</i>. The data implicated 13-methylhentriacontane as a probable host-specific kairomone used by specialist <i>M. croceipes</i>. These results suggest that specialist parasitoids like <i>M. croceipes</i> may exploit the differences in the composition of cuticular chemicals of caterpillars as cues for host recognition and discrimination.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 4","pages":"149 - 161"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00410-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical composition of cuticular hydrocarbons differs qualitatively and quantitatively among insect species. These differences convey species-specific information about host suitability to foraging parasitoids, enabling them to discriminate between the host and non-host species. Specialist parasitoids that parasitize fewer host species are predicted to use host-specific cues compared to generalists that have evolved to use common cues present in multiple potential host species. Here, we tested the above hypothesis by evaluating two parasitoids with varying levels of host specificity, Microplitis croceipes (specialist) and Cotesia marginiventris (generalist), for their responses to cuticular extracts of three caterpillar species, Chloridea virescens, Helicoverpa zea, and Spodoptera exigua. First, we compared the cuticular profiles of the three caterpillar species and found that C. virescens and H. zea were qualitatively similar in cuticular composition, whereas S. exigua differed qualitatively and quantitatively from the other two. In contact bioassays, both parasitoid species were behaviorally arrested by the host cuticular extracts, with specialist M. croceipes able to discriminate between the cuticular extracts of its host and non-host caterpillar species. Assessment with the coupled gas chromatography-electroantennogram detection (GC-EAD) revealed qualitative and quantitative differences in parasitoids’ antennal responses to the components of cuticular extracts of host species, with M. croceipes showing greater antennal response than generalist C. marginiventris. The data implicated 13-methylhentriacontane as a probable host-specific kairomone used by specialist M. croceipes. These results suggest that specialist parasitoids like M. croceipes may exploit the differences in the composition of cuticular chemicals of caterpillars as cues for host recognition and discrimination.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.