Synergy of Adsorption and Solar Photoreduction for Removal Cr(VI) with Spinel CuFe2O4

IF 0.5 4区 化学 Q4 CHEMISTRY, ANALYTICAL Journal of Water Chemistry and Technology Pub Date : 2024-07-31 DOI:10.3103/S1063455X24040027
Sihem Benaissa, Ali Alouache, Hamza Kaid, Ghezlane Berrahou, Amel Boudjemaa, Khaoula Dib, Clara Gomez
{"title":"Synergy of Adsorption and Solar Photoreduction for Removal Cr(VI) with Spinel CuFe2O4","authors":"Sihem Benaissa,&nbsp;Ali Alouache,&nbsp;Hamza Kaid,&nbsp;Ghezlane Berrahou,&nbsp;Amel Boudjemaa,&nbsp;Khaoula Dib,&nbsp;Clara Gomez","doi":"10.3103/S1063455X24040027","DOIUrl":null,"url":null,"abstract":"<p>The synergy effect between adsorption and solar photocatalysis to remove Cr(VI) is a new approach which is environmentally friendly and sustainable development technology. The choice of photocatalyst is crucial for achieving better performance in adsorption and photocatalytic reactions. The CuFe<sub>2</sub>O<sub>4</sub> catalysts with a spinel structure were synthesized by co-precipitation and sol-gel methods, and characterized by X-ray diffraction, BET surface area, Scanning electron microscopy, Raman and Fourier-transform infrared spectroscopy (FTIR). The results of this study show that the CuFe<sub>2</sub>O<sub>4</sub>-co is an excellent adsorbent and photocatalyst simultaneously for Cr(VI) removal, this activity is correlated to its structural, and textural properties and a relatively narrow band gap. The catalyst is mainly crystallized in cubic inverse spinel structure and exhibits a large pore size that facilitates the accessibility of active sites by chromium ions on the surface, which can also improve absorbed light penetration. Moreover, the UV-Vis diffuse reflectance spectrum shows that the catalyst has a low band gap energy (1.2 eV), allowing a broader absorption spectrum, which enhances its capability to generate electron−hole pairs under visible light of solar irradiation. The effects of oxalic acid as a reducing agent, preparation technique, catalyst concentration, and initial dose of Cr(VI) were studied in this research. 100% reduction of Cr(VI) to Cr(III) is achieved within 1 h in the presence of small quantities of oxalic acid to maintain the рН 3 at an optimal concentration of catalyst (0.25 g/L).</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24040027","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The synergy effect between adsorption and solar photocatalysis to remove Cr(VI) is a new approach which is environmentally friendly and sustainable development technology. The choice of photocatalyst is crucial for achieving better performance in adsorption and photocatalytic reactions. The CuFe2O4 catalysts with a spinel structure were synthesized by co-precipitation and sol-gel methods, and characterized by X-ray diffraction, BET surface area, Scanning electron microscopy, Raman and Fourier-transform infrared spectroscopy (FTIR). The results of this study show that the CuFe2O4-co is an excellent adsorbent and photocatalyst simultaneously for Cr(VI) removal, this activity is correlated to its structural, and textural properties and a relatively narrow band gap. The catalyst is mainly crystallized in cubic inverse spinel structure and exhibits a large pore size that facilitates the accessibility of active sites by chromium ions on the surface, which can also improve absorbed light penetration. Moreover, the UV-Vis diffuse reflectance spectrum shows that the catalyst has a low band gap energy (1.2 eV), allowing a broader absorption spectrum, which enhances its capability to generate electron−hole pairs under visible light of solar irradiation. The effects of oxalic acid as a reducing agent, preparation technique, catalyst concentration, and initial dose of Cr(VI) were studied in this research. 100% reduction of Cr(VI) to Cr(III) is achieved within 1 h in the presence of small quantities of oxalic acid to maintain the рН 3 at an optimal concentration of catalyst (0.25 g/L).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用尖晶石 CuFe2O4 去除六价铬的吸附和太阳能光生化协同作用
摘要 利用吸附和太阳能光催化的协同效应去除六价铬,是一种环境友好和可持续发展技术的新方法。光催化剂的选择是吸附和光催化反应取得更好性能的关键。本研究采用共沉淀法和溶胶-凝胶法合成了尖晶石结构的 CuFe2O4 催化剂,并通过 X 射线衍射、BET 表面积、扫描电子显微镜、拉曼光谱和傅立叶变换红外光谱(FTIR)对其进行了表征。研究结果表明,CuFe2O4-co 是一种极好的吸附剂和光催化剂,可同时去除六价铬,这种活性与其结构和质地特性以及相对较窄的带隙有关。该催化剂主要呈立方反尖晶石结构结晶,孔径较大,有利于铬离子进入表面活性位点,也能提高吸收光的穿透率。此外,紫外-可见光漫反射光谱显示,催化剂的带隙能较低(1.2 eV),因此吸收光谱较宽,从而增强了催化剂在太阳可见光照射下产生电子-空穴对的能力。本研究考察了草酸作为还原剂、制备技术、催化剂浓度和六价铬初始剂量的影响。在最佳催化剂浓度(0.25 克/升)下,有少量草酸存在时,可在 1 小时内将 Cr(VI) 100%还原为 Cr(III),从而保持 рН 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Water Chemistry and Technology
Journal of Water Chemistry and Technology CHEMISTRY, APPLIED-CHEMISTRY, ANALYTICAL
自引率
0.00%
发文量
51
审稿时长
>12 weeks
期刊介绍: Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.
期刊最新文献
Floating Amphiphilic Biomass-Based Material Obtained by Plasma Processing for Enhanced Wastewater Remediation Preparation of New Carbonaceous Adsorbents Based on Agricultural Waste and Its Application to the Elimination of Crystal Violet Dye from Water Media The Potential of Acid Hydrolysis as Pre-Treatment for Improved Nutrient Recovery from Domestic Wastewater Photometric Analysis for Trichlorophenoxyacetic Acid in Water and Bottom Sediments with the Use of Extraction Assessing the Presence of Metals in Surface Waters: A Case Study Conducted in Algeria Using a Combination of Artificial Neural Networks and Multiple Indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1