{"title":"M3: using mask-attention and multi-scale for multi-modal brain MRI classification","authors":"Guanqing Kong, Chuanfu Wu, Zongqiu Zhang, Chuansheng Yin, Dawei Qin","doi":"10.3389/fninf.2024.1403732","DOIUrl":null,"url":null,"abstract":"IntroductionBrain diseases, particularly the classification of gliomas and brain metastases and the prediction of HT in strokes, pose significant challenges in healthcare. Existing methods, relying predominantly on clinical data or imaging-based techniques such as radiomics, often fall short in achieving satisfactory classification accuracy. These methods fail to adequately capture the nuanced features crucial for accurate diagnosis, often hindered by noise and the inability to integrate information across various scales.MethodsWe propose a novel approach that mask attention mechanisms with multi-scale feature fusion for Multimodal brain disease classification tasks, termed <jats:italic>M</jats:italic><jats:sup>3</jats:sup>, which aims to extract features highly relevant to the disease. The extracted features are then dimensionally reduced using Principal Component Analysis (PCA), followed by classification with a Support Vector Machine (SVM) to obtain the predictive results.ResultsOur methodology underwent rigorous testing on multi-parametric MRI datasets for both brain tumors and strokes. The results demonstrate a significant improvement in addressing critical clinical challenges, including the classification of gliomas, brain metastases, and the prediction of hemorrhagic stroke transformations. Ablation studies further validate the effectiveness of our attention mechanism and feature fusion modules.DiscussionThese findings underscore the potential of our approach to meet and exceed current clinical diagnostic demands, offering promising prospects for enhancing healthcare outcomes in the diagnosis and treatment of brain diseases.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"214 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1403732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionBrain diseases, particularly the classification of gliomas and brain metastases and the prediction of HT in strokes, pose significant challenges in healthcare. Existing methods, relying predominantly on clinical data or imaging-based techniques such as radiomics, often fall short in achieving satisfactory classification accuracy. These methods fail to adequately capture the nuanced features crucial for accurate diagnosis, often hindered by noise and the inability to integrate information across various scales.MethodsWe propose a novel approach that mask attention mechanisms with multi-scale feature fusion for Multimodal brain disease classification tasks, termed M3, which aims to extract features highly relevant to the disease. The extracted features are then dimensionally reduced using Principal Component Analysis (PCA), followed by classification with a Support Vector Machine (SVM) to obtain the predictive results.ResultsOur methodology underwent rigorous testing on multi-parametric MRI datasets for both brain tumors and strokes. The results demonstrate a significant improvement in addressing critical clinical challenges, including the classification of gliomas, brain metastases, and the prediction of hemorrhagic stroke transformations. Ablation studies further validate the effectiveness of our attention mechanism and feature fusion modules.DiscussionThese findings underscore the potential of our approach to meet and exceed current clinical diagnostic demands, offering promising prospects for enhancing healthcare outcomes in the diagnosis and treatment of brain diseases.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.