Synergistic effects of heterotrophic and phototrophic metabolism for Haematococcus lacustris grown under mixotrophic conditions

IF 2.8 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Phycology Pub Date : 2024-07-30 DOI:10.1007/s10811-024-03322-x
Lars Stegemüller, Borja Valverde-Pérez, Anders Thygesen, Irini Angelidaki
{"title":"Synergistic effects of heterotrophic and phototrophic metabolism for Haematococcus lacustris grown under mixotrophic conditions","authors":"Lars Stegemüller, Borja Valverde-Pérez, Anders Thygesen, Irini Angelidaki","doi":"10.1007/s10811-024-03322-x","DOIUrl":null,"url":null,"abstract":"<p>Mixotrophic cultivation of <i>Haematococcus lacustris</i> is one of the most promising strategies to produce natural astaxanthin. During mixotrophic growth, microalgae assimilate and metabolize organic carbon in addition to photosynthetic growth, resulting in increased biomass productivity. Several studies have evaluated the effect of different organic carbon sources on mixotrophic growth in various microalgae species. However, knowledge of detailed growth kinetics as a function of substrate concentration and light intensity is lacking. In this study, the growth kinetics of <i>H. lacustris</i> using four different carbon sources and the effect of light under mixotrophic and photoautotrophic conditions are described. Mixotrophic cultivation showed significant differences in respect to applied substrate and achieved maximum specific growth rates of 0.91 ± 0.13, 0.19 ± 0.05, 0.36 ± 0.05, and 0.23 ± 0.05 day<sup>−1</sup>, for acetate, methanol, glucose, and glycerol, respectively. Optimal growth at mixotrophic conditions using acetate was 1.8 times higher than the sum of hetero- and photoautotrophic growth. Furthermore, the optimum light intensity was 1.3 times higher for mixotrophic than for autotrophic growth. Thus, mixotrophy increases light intensity tolerance. These results indicate a strong interconnection between carbon metabolism and photosynthetic activity and lay the foundation for more detailed mathematical models describing the mixotrophic growth of <i>H. lacustris</i>.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03322-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mixotrophic cultivation of Haematococcus lacustris is one of the most promising strategies to produce natural astaxanthin. During mixotrophic growth, microalgae assimilate and metabolize organic carbon in addition to photosynthetic growth, resulting in increased biomass productivity. Several studies have evaluated the effect of different organic carbon sources on mixotrophic growth in various microalgae species. However, knowledge of detailed growth kinetics as a function of substrate concentration and light intensity is lacking. In this study, the growth kinetics of H. lacustris using four different carbon sources and the effect of light under mixotrophic and photoautotrophic conditions are described. Mixotrophic cultivation showed significant differences in respect to applied substrate and achieved maximum specific growth rates of 0.91 ± 0.13, 0.19 ± 0.05, 0.36 ± 0.05, and 0.23 ± 0.05 day−1, for acetate, methanol, glucose, and glycerol, respectively. Optimal growth at mixotrophic conditions using acetate was 1.8 times higher than the sum of hetero- and photoautotrophic growth. Furthermore, the optimum light intensity was 1.3 times higher for mixotrophic than for autotrophic growth. Thus, mixotrophy increases light intensity tolerance. These results indicate a strong interconnection between carbon metabolism and photosynthetic activity and lay the foundation for more detailed mathematical models describing the mixotrophic growth of H. lacustris.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在混养条件下生长的漆包虫异养代谢和光养代谢的协同效应
鱼腥藻(Haematococcus lacustris)的混养培养是生产天然虾青素的最有前途的策略之一。在混养生长过程中,微藻类除了光合生长外,还吸收和代谢有机碳,从而提高生物量生产率。一些研究已经评估了不同有机碳源对各种微藻混养生长的影响。然而,关于底物浓度和光照强度对生长动力学的详细影响还缺乏了解。本研究描述了在混养和光自养条件下,H. lacustris 使用四种不同碳源的生长动力学以及光照的影响。混养栽培在应用基质方面存在显著差异,醋酸盐、甲醇、葡萄糖和甘油的最大比生长率分别为 0.91 ± 0.13、0.19 ± 0.05、0.36 ± 0.05 和 0.23 ± 0.05 天-1。使用醋酸盐的混养条件下的最佳生长量是异养和光自养生长量总和的 1.8 倍。此外,混养条件下的最佳光照强度是自养条件下的 1.3 倍。因此,混养提高了对光照强度的耐受性。这些结果表明碳代谢与光合作用之间存在密切联系,并为建立更详细的数学模型来描述 H. lacustris 的混养生长奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Phycology
Journal of Applied Phycology 生物-海洋与淡水生物学
CiteScore
6.80
自引率
9.10%
发文量
212
审稿时长
2.8 months
期刊介绍: The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae. The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds. Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.
期刊最新文献
The production and characteristics of glycogen synthesized by various strains of the thermoacidophilic red microalgae Galdieria grown heterotrophically Elucidating the structure of novel cyanobacterial siderophore produced by Anabaena oryzae and its implication in removal of cadmium Effect of different drying methods on the nutritional composition and phenolic compounds of the brown macroalga, Fucus vesiculosus (Fucales, Phaeophyceae) Beneficial effects of dietary supplementation of tropical seaweeds on rumen fermentation, antioxidant status, immunity and milk yield of lactating Murrah buffaloes Prevention and control of parasitic contamination in industrial microalgae cultures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1