Describing group evolution in temporal data using multi-faceted events

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Pub Date : 2024-08-01 DOI:10.1007/s10994-024-06600-4
Andrea Failla, Rémy Cazabet, Giulio Rossetti, Salvatore Citraro
{"title":"Describing group evolution in temporal data using multi-faceted events","authors":"Andrea Failla, Rémy Cazabet, Giulio Rossetti, Salvatore Citraro","doi":"10.1007/s10994-024-06600-4","DOIUrl":null,"url":null,"abstract":"<p>Groups—such as clusters of points or communities of nodes—are fundamental when addressing various data mining tasks. In temporal data, the predominant approach for characterizing group evolution has been through the identification of “events”. However, the events usually described in the literature, e.g., shrinks/growths, splits/merges, are often arbitrarily defined, creating a gap between such theoretical/predefined types and real-data group observations. Moving beyond existing taxonomies, we think of events as “archetypes” characterized by a unique combination of quantitative dimensions that we call “facets”. Group dynamics are defined by their position within the facet space, where archetypal events occupy extremities. Thus, rather than enforcing strict event types, our approach can allow for hybrid descriptions of dynamics involving group proximity to multiple archetypes. We apply our framework to evolving groups from several face-to-face interaction datasets, showing it enables richer, more reliable characterization of group dynamics with respect to state-of-the-art methods, especially when the groups are subject to complex relationships. Our approach also offers intuitive solutions to common tasks related to dynamic group analysis, such as choosing an appropriate aggregation scale, quantifying partition stability, and evaluating event quality.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"78 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06600-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Groups—such as clusters of points or communities of nodes—are fundamental when addressing various data mining tasks. In temporal data, the predominant approach for characterizing group evolution has been through the identification of “events”. However, the events usually described in the literature, e.g., shrinks/growths, splits/merges, are often arbitrarily defined, creating a gap between such theoretical/predefined types and real-data group observations. Moving beyond existing taxonomies, we think of events as “archetypes” characterized by a unique combination of quantitative dimensions that we call “facets”. Group dynamics are defined by their position within the facet space, where archetypal events occupy extremities. Thus, rather than enforcing strict event types, our approach can allow for hybrid descriptions of dynamics involving group proximity to multiple archetypes. We apply our framework to evolving groups from several face-to-face interaction datasets, showing it enables richer, more reliable characterization of group dynamics with respect to state-of-the-art methods, especially when the groups are subject to complex relationships. Our approach also offers intuitive solutions to common tasks related to dynamic group analysis, such as choosing an appropriate aggregation scale, quantifying partition stability, and evaluating event quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多方面事件描述时间数据中的群体演变
在处理各种数据挖掘任务时,群体(如点群或节点群)是最基本的。在时态数据中,描述群体演变的主要方法是识别 "事件"。然而,文献中通常描述的事件,如收缩/增长、分裂/合并,往往是任意定义的,这就在此类理论/预定义类型与实际数据群体观察之间造成了差距。超越现有的分类法,我们将事件视为 "原型",其特点是独特的量化维度组合,我们称之为 "面"。群体动态由其在 "面 "空间中的位置来定义,原型事件在 "面 "空间中占据极端位置。因此,我们的方法并不强制要求严格的事件类型,而是允许对涉及群体接近多种原型的动态进行混合描述。我们将我们的框架应用于几个面对面互动数据集中不断演化的群体,结果表明,与最先进的方法相比,它能对群体动态进行更丰富、更可靠的描述,尤其是在群体关系复杂的情况下。我们的方法还为与动态群体分析相关的常见任务提供了直观的解决方案,例如选择合适的聚合规模、量化分区稳定性和评估事件质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
期刊最新文献
On metafeatures’ ability of implicit concept identification Persistent Laplacian-enhanced algorithm for scarcely labeled data classification Towards a foundation large events model for soccer Conformal prediction for regression models with asymmetrically distributed errors: application to aircraft navigation during landing maneuver In-game soccer outcome prediction with offline reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1