Rogério Ribeiro, Athos Moraes, Marta Moreno, Pedro G. Ferreira
{"title":"Integration of multi-modal datasets to estimate human aging","authors":"Rogério Ribeiro, Athos Moraes, Marta Moreno, Pedro G. Ferreira","doi":"10.1007/s10994-024-06588-x","DOIUrl":null,"url":null,"abstract":"<p>Aging involves complex biological processes leading to the decline of living organisms. As population lifespan increases worldwide, the importance of identifying factors underlying healthy aging has become critical. Integration of multi-modal datasets is a powerful approach for the analysis of complex biological systems, with the potential to uncover novel aging biomarkers. In this study, we leveraged publicly available epigenomic, transcriptomic and telomere length data along with histological images from the Genotype-Tissue Expression project to build tissue-specific regression models for age prediction. Using data from two tissues, lung and ovary, we aimed to compare model performance across data modalities, as well as to assess the improvement resulting from integrating multiple data types. Our results demostrate that methylation outperformed the other data modalities, with a mean absolute error of 3.36 and 4.36 in the test sets for lung and ovary, respectively. These models achieved lower error rates when compared with established state-of-the-art tissue-agnostic methylation models, emphasizing the importance of a tissue-specific approach. Additionally, this work has shown how the application of Hierarchical Image Pyramid Transformers for feature extraction significantly enhances age modeling using histological images. Finally, we evaluated the benefits of integrating multiple data modalities into a single model. Combining methylation data with other data modalities only marginally improved performance likely due to the limited number of available samples. Combining gene expression with histological features yielded more accurate age predictions compared with the individual performance of these data types. Given these results, this study shows how machine learning applications can be extended to/in multi-modal aging research. Code used is available at https://github.com/zroger49/multi_modal_age_prediction.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"20 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06588-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aging involves complex biological processes leading to the decline of living organisms. As population lifespan increases worldwide, the importance of identifying factors underlying healthy aging has become critical. Integration of multi-modal datasets is a powerful approach for the analysis of complex biological systems, with the potential to uncover novel aging biomarkers. In this study, we leveraged publicly available epigenomic, transcriptomic and telomere length data along with histological images from the Genotype-Tissue Expression project to build tissue-specific regression models for age prediction. Using data from two tissues, lung and ovary, we aimed to compare model performance across data modalities, as well as to assess the improvement resulting from integrating multiple data types. Our results demostrate that methylation outperformed the other data modalities, with a mean absolute error of 3.36 and 4.36 in the test sets for lung and ovary, respectively. These models achieved lower error rates when compared with established state-of-the-art tissue-agnostic methylation models, emphasizing the importance of a tissue-specific approach. Additionally, this work has shown how the application of Hierarchical Image Pyramid Transformers for feature extraction significantly enhances age modeling using histological images. Finally, we evaluated the benefits of integrating multiple data modalities into a single model. Combining methylation data with other data modalities only marginally improved performance likely due to the limited number of available samples. Combining gene expression with histological features yielded more accurate age predictions compared with the individual performance of these data types. Given these results, this study shows how machine learning applications can be extended to/in multi-modal aging research. Code used is available at https://github.com/zroger49/multi_modal_age_prediction.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.