Shun-Yu Wang, Zhi-Gang Shao, Cang-Long Wang, Lei Yang
{"title":"Theoretical investigation of the sensing capabilities of intrinsic and Fe-modified net-Y on SF\\(_6\\) decomposition products","authors":"Shun-Yu Wang, Zhi-Gang Shao, Cang-Long Wang, Lei Yang","doi":"10.1140/epjb/s10051-024-00755-8","DOIUrl":null,"url":null,"abstract":"<p>Detection of SF<span>\\(_6\\)</span> decomposition gases is crucial in power equipment maintenance. This paper investigates the adsorption behavior of SO<span>\\(_2\\)</span> and H<span>\\(_2\\)</span>S on the intrinsic and Fe-modified net-Y surfaces using density functional theory. The adsorption parameters and electronic attributes of diverse configurations have been scrutinized. Calculations indicate that net-Y exhibits limited adsorption capacity for both gases. The doped substrate exhibits a localized magnetic moment around the Fe atom, indicating the possible occurrence of the Kondo effect in the system. The substrate chemisorbs with the target gas through the Fe 3d orbitals. Additionally, after the adsorption of gases, the system undergoes a transition from metallic to semiconductor properties, accompanied by a near-complete disappearance of magnetism. Specifically, in two adsorption configurations, the systems manifest the characteristics of half-semiconductor and half-metal, respectively. Our study provides evidence that the incorporation of Fe-modified net-Y shows potential as a disposable device for detecting and purifying the decomposition products of SF<span>\\(_6\\)</span>, presenting a prospective application for net-Y in spintronic devices.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00755-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Detection of SF\(_6\) decomposition gases is crucial in power equipment maintenance. This paper investigates the adsorption behavior of SO\(_2\) and H\(_2\)S on the intrinsic and Fe-modified net-Y surfaces using density functional theory. The adsorption parameters and electronic attributes of diverse configurations have been scrutinized. Calculations indicate that net-Y exhibits limited adsorption capacity for both gases. The doped substrate exhibits a localized magnetic moment around the Fe atom, indicating the possible occurrence of the Kondo effect in the system. The substrate chemisorbs with the target gas through the Fe 3d orbitals. Additionally, after the adsorption of gases, the system undergoes a transition from metallic to semiconductor properties, accompanied by a near-complete disappearance of magnetism. Specifically, in two adsorption configurations, the systems manifest the characteristics of half-semiconductor and half-metal, respectively. Our study provides evidence that the incorporation of Fe-modified net-Y shows potential as a disposable device for detecting and purifying the decomposition products of SF\(_6\), presenting a prospective application for net-Y in spintronic devices.