Effects of Calcium and Magnesium Ion Ratios in Natural and Drinking Water on the Vitality of Test Organisms

IF 0.5 4区 化学 Q4 CHEMISTRY, ANALYTICAL Journal of Water Chemistry and Technology Pub Date : 2024-07-31 DOI:10.3103/S1063455X24040052
V. F. Kovalenko, A. M. Sova
{"title":"Effects of Calcium and Magnesium Ion Ratios in Natural and Drinking Water on the Vitality of Test Organisms","authors":"V. F. Kovalenko,&nbsp;A. M. Sova","doi":"10.3103/S1063455X24040052","DOIUrl":null,"url":null,"abstract":"<p>Mineral exchange is a crucial factor for all functions within the organisms of living beings. Chemical elements are integral components of cellular structures, organs, and tissues, as well as the blood and lymph. Together with water, they maintain osmotic pressure, support acid–base balance, and participate in various metabolic reactions within the body. Calcium and magnesium ions are also involved in metabolic interactions. The absorption of calcium by the organism requires magnesium, with magnesium reserves being drawn from various organs and tissues. Therefore, the ratio of calcium-to-magnesium ion concentrations in water is of significant importance. In this study, the results of a chronic experiment demonstrated that desalinated water, devoid of macroelements, affected the vitality of the organisms, even when the test crustaceans were fed. According to experimental data, the maximum survival duration of the experimental group of crustaceans was observed in a water environment with a calcium-to-magnesium ion ratio of 4 : 1. Given the nontoxicity of the water environment, it can be concluded that at such a ratio of these elements, metabolic processes within the organism operate optimally, thereby prolonging the lifespan of the test organisms.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24040052","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mineral exchange is a crucial factor for all functions within the organisms of living beings. Chemical elements are integral components of cellular structures, organs, and tissues, as well as the blood and lymph. Together with water, they maintain osmotic pressure, support acid–base balance, and participate in various metabolic reactions within the body. Calcium and magnesium ions are also involved in metabolic interactions. The absorption of calcium by the organism requires magnesium, with magnesium reserves being drawn from various organs and tissues. Therefore, the ratio of calcium-to-magnesium ion concentrations in water is of significant importance. In this study, the results of a chronic experiment demonstrated that desalinated water, devoid of macroelements, affected the vitality of the organisms, even when the test crustaceans were fed. According to experimental data, the maximum survival duration of the experimental group of crustaceans was observed in a water environment with a calcium-to-magnesium ion ratio of 4 : 1. Given the nontoxicity of the water environment, it can be concluded that at such a ratio of these elements, metabolic processes within the organism operate optimally, thereby prolonging the lifespan of the test organisms.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然水和饮用水中的钙镁离子比率对测试生物体活力的影响
摘要 矿物质交换是生物体内所有功能的关键因素。化学元素是细胞结构、器官和组织以及血液和淋巴不可或缺的组成部分。它们与水一起维持渗透压,支持酸碱平衡,并参与体内的各种新陈代谢反应。钙离子和镁离子也参与新陈代谢的相互作用。机体对钙的吸收需要镁,而镁的储备则来自各个器官和组织。因此,水中钙镁离子浓度的比例非常重要。在这项研究中,一项慢性实验的结果表明,缺乏宏量元素的淡化水会影响生物的活力,即使在给试验甲壳动物喂食的情况下也是如此。实验数据显示,在钙镁离子比例为 4 : 1 的水环境中,甲壳类实验组的存活时间最长。鉴于水环境的无毒性,可以得出结论,在这种元素比例下,生物体内的新陈代谢过程能以最佳状态运行,从而延长试验生物的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Water Chemistry and Technology
Journal of Water Chemistry and Technology CHEMISTRY, APPLIED-CHEMISTRY, ANALYTICAL
自引率
0.00%
发文量
51
审稿时长
>12 weeks
期刊介绍: Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.
期刊最新文献
Floating Amphiphilic Biomass-Based Material Obtained by Plasma Processing for Enhanced Wastewater Remediation Preparation of New Carbonaceous Adsorbents Based on Agricultural Waste and Its Application to the Elimination of Crystal Violet Dye from Water Media The Potential of Acid Hydrolysis as Pre-Treatment for Improved Nutrient Recovery from Domestic Wastewater Photometric Analysis for Trichlorophenoxyacetic Acid in Water and Bottom Sediments with the Use of Extraction Assessing the Presence of Metals in Surface Waters: A Case Study Conducted in Algeria Using a Combination of Artificial Neural Networks and Multiple Indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1