Hot carriers from intra- and interband transitions in gold-silver alloy nanoparticles

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-08-01 DOI:10.1038/s42004-024-01244-w
Shreyas Ramachandran, Simão M. João, Hanwen Jin, Johannes Lischner
{"title":"Hot carriers from intra- and interband transitions in gold-silver alloy nanoparticles","authors":"Shreyas Ramachandran, Simão M. João, Hanwen Jin, Johannes Lischner","doi":"10.1038/s42004-024-01244-w","DOIUrl":null,"url":null,"abstract":"Hot electrons and holes generated from the decay of localised surface plasmons in metallic nanoparticles can be harnessed for applications in solar energy conversion and sensing. In this paper, we study the generation of hot carriers in large spherical gold-silver alloy nanoparticles using a recently developed atomistic modelling approach that combines a solution of Maxwell’s equations with large-scale tight-binding simulations. We find that hot-carrier properties depend sensitively on the alloy composition. Specifically, nanoparticles with a large gold fraction produce hot carriers under visible light illumination while nanoparticles with a large silver fraction require higher photon energies to produce hot carriers. Moreover, most hot carriers in nanoparticles with a large gold fraction originate from interband transitions which give rise to energetic holes and ‘cold’ electrons near the Fermi level. Increasing the silver fraction enhances the generation rate of hot carriers from intraband transitions which produce energetic electrons and ‘cold’ holes. These findings demonstrate that alloy composition is a powerful tuning parameter for the design of nanoparticles for applications in solar energy conversion and sensing that require precise control of hot-carrier properties. To accelerate the design of plasmonic alloy nanoparticles for application in solar energy conversion devices, a detailed understanding of their electronic structure is required. Here, the authors use an atomistic modelling approach that combines a solution of Maxwell’s equations with large-scale tight-binding simulations to study the generation of hot carriers in large spherical gold-silver alloy nanoparticles.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01244-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hot electrons and holes generated from the decay of localised surface plasmons in metallic nanoparticles can be harnessed for applications in solar energy conversion and sensing. In this paper, we study the generation of hot carriers in large spherical gold-silver alloy nanoparticles using a recently developed atomistic modelling approach that combines a solution of Maxwell’s equations with large-scale tight-binding simulations. We find that hot-carrier properties depend sensitively on the alloy composition. Specifically, nanoparticles with a large gold fraction produce hot carriers under visible light illumination while nanoparticles with a large silver fraction require higher photon energies to produce hot carriers. Moreover, most hot carriers in nanoparticles with a large gold fraction originate from interband transitions which give rise to energetic holes and ‘cold’ electrons near the Fermi level. Increasing the silver fraction enhances the generation rate of hot carriers from intraband transitions which produce energetic electrons and ‘cold’ holes. These findings demonstrate that alloy composition is a powerful tuning parameter for the design of nanoparticles for applications in solar energy conversion and sensing that require precise control of hot-carrier properties. To accelerate the design of plasmonic alloy nanoparticles for application in solar energy conversion devices, a detailed understanding of their electronic structure is required. Here, the authors use an atomistic modelling approach that combines a solution of Maxwell’s equations with large-scale tight-binding simulations to study the generation of hot carriers in large spherical gold-silver alloy nanoparticles.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金银合金纳米粒子带内和带间跃迁产生的热载流子。
金属纳米粒子中局部表面质子衰变产生的热电子和空穴可用于太阳能转换和传感领域。在本文中,我们采用最新开发的原子建模方法,结合麦克斯韦方程求解和大规模紧密结合模拟,研究了大型球形金银合金纳米粒子中热载流子的产生。我们发现,热载流子特性与合金成分密切相关。具体来说,金成分较多的纳米粒子在可见光照射下会产生热载流子,而银成分较多的纳米粒子则需要较高的光子能量才能产生热载流子。此外,金含量高的纳米粒子中的大多数热载流子都来自带间跃迁,这种跃迁会产生费米级附近的高能空穴和 "冷 "电子。银成分的增加会提高带内跃迁产生的热载流子的产生率,带内跃迁会产生高能电子和 "冷 "空穴。这些发现表明,合金成分是一个强大的调整参数,可用于设计太阳能转换和传感应用中需要精确控制热载流子特性的纳米粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane. Women in Chemistry: Q&A with Dr Shira Joudan. Conditions for enhancement of gas phase chemical reactions inside a dark microwave cavity Machine learning analysis of a large set of homopolymers to predict glass transition temperatures Women in chemistry: Q&A with Professor Tricia Breen Carmichael
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1