Whole-genome sequencing of Western Canadian Borrelia spp. collected from diverse tick and animal hosts reveals short-lived local genotypes interspersed with longer-lived continental genotypes.
Jennifer N Russell, Min-Kuang Lee, Miguel I Uyaguari-Diaz, Ashton N Sies, Danae M Suchan, William Hsiao, Erin Fraser, Muhammad G Morshed, Andrew D S Cameron
{"title":"Whole-genome sequencing of Western Canadian <i>Borrelia</i> spp. collected from diverse tick and animal hosts reveals short-lived local genotypes interspersed with longer-lived continental genotypes.","authors":"Jennifer N Russell, Min-Kuang Lee, Miguel I Uyaguari-Diaz, Ashton N Sies, Danae M Suchan, William Hsiao, Erin Fraser, Muhammad G Morshed, Andrew D S Cameron","doi":"10.1099/mgen.0.001276","DOIUrl":null,"url":null,"abstract":"<p><p>Changing climates are allowing the geographic expansion of ticks and their animal hosts, increasing the risk of <i>Borrelia</i>-caused zoonoses in Canada. However, little is known about the genomic diversity of <i>Borrelia</i> from the west of the Canadian Rockies and from the tick vectors <i>Ixodes pacificus</i>, <i>Ixodes auritulus</i> and <i>Ixodes angustus</i>. Here, we report the whole-genome shotgun sequences of 51 <i>Borrelia</i> isolates from multiple tick species collected on a range of animal hosts between 1993 and 2016, located primarily in coastal British Columbia. The bacterial isolates represented three different species from the Lyme disease-causing <i>Borrelia burgdorferi sensu lato</i> genospecies complex [<i>Borrelia burgdorferi sensu stricto</i> (<i>n</i>=47), <i>Borrelia americana</i> (<i>n</i>=3) and <i>Borrelia bissettiae</i> (<i>n</i>=1)]. The traditional eight-gene multi-locus sequence typing (MLST) strategy was applied to facilitate comparisons across studies. This identified 13 known <i>Borrelia</i> sequence types (STs), established 6 new STs, and assigned 5 novel types to the nearest sequence types. <i>B. burgdorferi</i> s. s. isolates were further differentiated into ten <i>ospC</i> types, plus one novel <i>ospC</i> with less than 92 % nucleotide identity to all previously defined <i>ospC</i> types. The MLST types resampled over extended time periods belonged to previously described STs that are distributed across North America. The most geographically widespread ST, ST.12, was isolated from all three tick species. Conversely, new <i>B. burgdorferi</i> s. s. STs from Vancouver Island and the Vancouver region were only detected for short periods, revealing a surprising transience in space, time and host tick species, possibly due to displacement by longer-lived genotypes that expanded across North America.This article contains data hosted by Microreact.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001276","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Changing climates are allowing the geographic expansion of ticks and their animal hosts, increasing the risk of Borrelia-caused zoonoses in Canada. However, little is known about the genomic diversity of Borrelia from the west of the Canadian Rockies and from the tick vectors Ixodes pacificus, Ixodes auritulus and Ixodes angustus. Here, we report the whole-genome shotgun sequences of 51 Borrelia isolates from multiple tick species collected on a range of animal hosts between 1993 and 2016, located primarily in coastal British Columbia. The bacterial isolates represented three different species from the Lyme disease-causing Borrelia burgdorferi sensu lato genospecies complex [Borrelia burgdorferi sensu stricto (n=47), Borrelia americana (n=3) and Borrelia bissettiae (n=1)]. The traditional eight-gene multi-locus sequence typing (MLST) strategy was applied to facilitate comparisons across studies. This identified 13 known Borrelia sequence types (STs), established 6 new STs, and assigned 5 novel types to the nearest sequence types. B. burgdorferi s. s. isolates were further differentiated into ten ospC types, plus one novel ospC with less than 92 % nucleotide identity to all previously defined ospC types. The MLST types resampled over extended time periods belonged to previously described STs that are distributed across North America. The most geographically widespread ST, ST.12, was isolated from all three tick species. Conversely, new B. burgdorferi s. s. STs from Vancouver Island and the Vancouver region were only detected for short periods, revealing a surprising transience in space, time and host tick species, possibly due to displacement by longer-lived genotypes that expanded across North America.This article contains data hosted by Microreact.
期刊介绍:
Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.