{"title":"Leveraging innovization and transfer learning to optimize best management practices in large-scale watershed management","authors":"","doi":"10.1016/j.envsoft.2024.106161","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research in evolutionary multi-objective optimization (EMO) highlights the concept of “Innovization”, which identifies essential patterns in high-quality, non-dominated solutions. This study introduces a novel method to pinpoint influential Best Management Practices (BMPs) in the Chesapeake Bay Watershed, optimizing the trade-off solution process. This approach, though innovative, demands considerable expertise and involves generating multiple solutions for expert analysis to detect commonly used BMPs. We devised three re-optimization strategies from these findings using an innovized BMP list, efficiently producing high-quality solutions. We also implemented transfer learning to adapt these strategies for new counties, demonstrating effectiveness in four West Virginia counties by reducing decision variables by 3% to 33% and achieving similar reductions in four additional counties. This showcases the potential of combining innovization with transfer learning to simplify complex optimization challenges, emphasizing its significant applicability in real-world settings.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002226","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research in evolutionary multi-objective optimization (EMO) highlights the concept of “Innovization”, which identifies essential patterns in high-quality, non-dominated solutions. This study introduces a novel method to pinpoint influential Best Management Practices (BMPs) in the Chesapeake Bay Watershed, optimizing the trade-off solution process. This approach, though innovative, demands considerable expertise and involves generating multiple solutions for expert analysis to detect commonly used BMPs. We devised three re-optimization strategies from these findings using an innovized BMP list, efficiently producing high-quality solutions. We also implemented transfer learning to adapt these strategies for new counties, demonstrating effectiveness in four West Virginia counties by reducing decision variables by 3% to 33% and achieving similar reductions in four additional counties. This showcases the potential of combining innovization with transfer learning to simplify complex optimization challenges, emphasizing its significant applicability in real-world settings.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.