Enhancement of astaxanthin accumulation via energy reassignment by removing the flagella of Haematococcus pluvialis.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioresources and Bioprocessing Pub Date : 2024-08-02 DOI:10.1186/s40643-024-00789-x
Yuyong Hou, Zhile Guo, Zhiyong Liu, Suihao Yan, Meijie Cui, Fangjian Chen, Weijie Wang, Longjiang Yu, Lei Zhao
{"title":"Enhancement of astaxanthin accumulation via energy reassignment by removing the flagella of Haematococcus pluvialis.","authors":"Yuyong Hou, Zhile Guo, Zhiyong Liu, Suihao Yan, Meijie Cui, Fangjian Chen, Weijie Wang, Longjiang Yu, Lei Zhao","doi":"10.1186/s40643-024-00789-x","DOIUrl":null,"url":null,"abstract":"<p><p>Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"78"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00789-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移除血球藻的鞭毛,通过能量重新分配提高虾青素的积累。
血球藻虾青素的生物合成是由能量驱动的。然而,鞭毛介导的耗能运动过程对虾青素积累的影响尚未得到深入研究。本研究结合光合作用参数,对有无鞭毛在 pH 值冲击下的虾青素和 NADPH 含量曲线进行了表征。结果表明,除了在 pH 值冲击处理组观察到鞭毛脱落外,细胞形态没有发生显著变化。相反,在 4、8 和 12 小时后,无鞭毛组的虾青素含量分别比对照组高 62.9%、62.8% 和 91.1%。同时,Y(II)的增加和 Y(NO)的减少表明,缺乏鞭毛运动过程的细胞可能将更多的能量用于虾青素的生物合成。NADPH 分析证实了这一发现,该分析表明去除鞭毛的细胞中的 NADPH 水平更高。这些结果初步揭示了缺乏运动的细胞通过能量重新分配实现虾青素积累的内在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
期刊最新文献
Stress-induced premature senescence in high five cell cultures: a principal factor in cell-density effects. Precise regulating the specific oxygen consumption rate to strengthen the CoQ10 biosynthesis by Rhodobater sphaeroides. Transcriptomics-guided optimization of vitamins to enhance erythromycin yield in saccharopolyspora erythraea. Evaluation of cosmetic efficacy of lychee seed fermentation liquid. Computational-guided discovery of UDP-glycosyltransferases for lauryl glucoside production using engineered E. coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1