Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT.

IF 1 4区 医学 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Computer Assisted Tomography Pub Date : 2024-08-02 DOI:10.1097/RCT.0000000000001634
Zhijuan Zheng, Yuying Liang, Zhehao Wu, Qijia Han, Zhu Ai, Kun Ma, Zhiming Xiang
{"title":"Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT.","authors":"Zhijuan Zheng, Yuying Liang, Zhehao Wu, Qijia Han, Zhu Ai, Kun Ma, Zhiming Xiang","doi":"10.1097/RCT.0000000000001634","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterative reconstruction-Veo (ASIR-V).</p><p><strong>Methods: </strong>One hundred eighty-three patients with pulmonary nodules underwent standard-dose computed tomography (SDCT) (4.30 ± 0.36 mSv) and ULD-CT (UL-A, 0.57 ± 0.09 mSv or UL-B, 0.33 ± 0.04 mSv). SDCT was the reference standard using (ASIR-V) at 50% strength (50%ASIR-V). ULD-CT was reconstructed with 50%ASIR-V, DLIR at medium and high strength (DLIR-M, DLIR-H). Radiomics analysis extracted 102 features, and the intraclass correlation coefficient (ICC) quantified reproducibility between ULD-CT and SDCT reconstructed by 50%ASIR-V, DLIR-M, and DLIR-H for each feature.</p><p><strong>Results: </strong>Among 102 radiomic features, the percentages of reproducibility of 50%ASIR-V, DLIR-M, and DLIR-H were 48.04% (49/102), 49.02% (50/102), and 52.94% (54/102), respectively. Shape and first order features demonstrated high reproducibility across different reconstruction algorithms and radiation doses, with mean ICC values exceeding 0.75. In texture features, DLIR-M and DLIR-H showed improved mean ICC values for pure ground glass nodules (pGGNs) from 0.69 ± 0.23 to 0.75 ± 0.18 and 0.81 ± 0.12, respectively, compared with 50%ASIR-V. Similarly, the mean ICC values for solid nodules (SNs) increased from 0.60 ± 0.19 to 0.66 ± 0.14 and 0.69 ± 0.13, respectively. Additionally, the mean ICC values of texture features for pGGNs and SNs in both ULD-CT groups decreased with reduced radiation dose.</p><p><strong>Conclusions: </strong>DLIR can improve the reproducibility of radiomic features at ultra-low doses compared with ASIR-V. In addition, pGGNs showed better reproducibility at ultra-low doses than SNs.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001634","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterative reconstruction-Veo (ASIR-V).

Methods: One hundred eighty-three patients with pulmonary nodules underwent standard-dose computed tomography (SDCT) (4.30 ± 0.36 mSv) and ULD-CT (UL-A, 0.57 ± 0.09 mSv or UL-B, 0.33 ± 0.04 mSv). SDCT was the reference standard using (ASIR-V) at 50% strength (50%ASIR-V). ULD-CT was reconstructed with 50%ASIR-V, DLIR at medium and high strength (DLIR-M, DLIR-H). Radiomics analysis extracted 102 features, and the intraclass correlation coefficient (ICC) quantified reproducibility between ULD-CT and SDCT reconstructed by 50%ASIR-V, DLIR-M, and DLIR-H for each feature.

Results: Among 102 radiomic features, the percentages of reproducibility of 50%ASIR-V, DLIR-M, and DLIR-H were 48.04% (49/102), 49.02% (50/102), and 52.94% (54/102), respectively. Shape and first order features demonstrated high reproducibility across different reconstruction algorithms and radiation doses, with mean ICC values exceeding 0.75. In texture features, DLIR-M and DLIR-H showed improved mean ICC values for pure ground glass nodules (pGGNs) from 0.69 ± 0.23 to 0.75 ± 0.18 and 0.81 ± 0.12, respectively, compared with 50%ASIR-V. Similarly, the mean ICC values for solid nodules (SNs) increased from 0.60 ± 0.19 to 0.66 ± 0.14 and 0.69 ± 0.13, respectively. Additionally, the mean ICC values of texture features for pGGNs and SNs in both ULD-CT groups decreased with reduced radiation dose.

Conclusions: DLIR can improve the reproducibility of radiomic features at ultra-low doses compared with ASIR-V. In addition, pGGNs showed better reproducibility at ultra-low doses than SNs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习图像重建算法对超低剂量 CT 中肺部结节放射学特征的影响
研究目的本研究旨在探讨深度学习图像重建(DLIR)算法与自适应统计迭代重建-Veo(ASIR-V)相比对超低剂量计算机断层扫描(ULD-CT)放射学特征量化的影响:183例肺部结节患者接受了标准剂量计算机断层扫描(SDCT)(4.30 ± 0.36 mSv)和超低剂量计算机断层扫描(UL-A,0.57 ± 0.09 mSv 或 UL-B,0.33 ± 0.04 mSv)。SDCT 是使用 50% 强度 (50%ASIR-V) 的 (ASIR-V) 作为参考标准。ULD-CT 采用 50%ASIR-V 和中高强度 DLIR(DLIR-M、DLIR-H)进行重建。放射组学分析提取了102个特征,类内相关系数(ICC)量化了ULD-CT与50%ASIR-V、DLIR-M和DLIR-H重建的SDCT之间每个特征的再现性:在 102 个放射学特征中,50%ASIR-V、DLIR-M 和 DLIR-H 的再现性分别为 48.04%(49/102)、49.02%(50/102)和 52.94%(54/102)。在不同的重建算法和辐射剂量下,形状和一阶特征具有很高的重现性,平均 ICC 值超过 0.75。在纹理特征方面,DLIR-M 和 DLIR-H 与 50%ASIR-V 相比,纯磨碎玻璃结节(pGGNs)的平均 ICC 值分别从 0.69 ± 0.23 提高到 0.75 ± 0.18 和 0.81 ± 0.12。同样,实性结节(SN)的平均 ICC 值分别从 0.60 ± 0.19 增加到 0.66 ± 0.14 和 0.69 ± 0.13。此外,两组 ULD-CT 中 pGGNs 和 SNs 纹理特征的平均 ICC 值随着辐射剂量的减少而降低:结论:与 ASIR-V 相比,DLIR 可以提高超低剂量下放射学特征的可重复性。此外,pGGNs 在超低剂量下的再现性比 SNs 更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
230
审稿时长
4-8 weeks
期刊介绍: The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).
期刊最新文献
Evaluation of Amide Proton Transfer Imaging Combined With Serum Squamous Cell Carcinoma Antigen for Grading Cervical cancer. Evaluating the Efficacy of Deep Learning Reconstruction in Reducing Radiation Dose for Computer-Aided Volumetry for Liver Tumor: A Phantom Study. Improving Image Quality and Visualization of Hepatocellular Carcinoma in Arterial Phase Imaging Using Contrast Enhancement-Boost Technique. Phosphaturic Mesenchymal Tumor and Tumor-Induced Osteomalacia: A Report of 5 Cases, Including 2 Skull Base Cases With Arterial Spin Label Perfusion. Application of a Deep Learning-Based Contrast-Boosting Algorithm to Low-Dose Computed Tomography Pulmonary Angiography With Reduced Iodine Load.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1