{"title":"Carbon dots-facilitated on-demand dissolution of Ca-alginate hydrogel via site-specific mineralization for wound healing.","authors":"Qian Li, Chenguang Liu, Dongming Xing","doi":"10.1186/s12951-024-02729-5","DOIUrl":null,"url":null,"abstract":"<p><p>On-demand dissolution of hydrogels has shown much potential in easy and pain-free removal of wound dressings. This work firstly describes a type of carbon dots (CDs) for dissolving Ca-alginate hydrogel via site-specific mineralization method. The CDs were characterized by two features, which included presence of primary/secondary amine groups and generation of calcium crystals with Ca<sup>2+</sup>. Especially, the amount of primary/secondary amine groups on CDs played key role in determining whether hydrogel could be dissolved. When there were sufficient primary/secondary amine groups, the mineralization occurred on CDs rather than alginates due to the hydrogen bond between primary/secondary amine and carboxyl of alginates. Thereby, this promoted the gel-sol transition through Ca<sup>2+</sup> capture from the hydrogels. Moreover, antibacterial test revealed Ca<sup>2+</sup> capture from cell walls, while in vivo test revealed hypoxia relief due to porous structures of the renewed hydrogels. Overall, CDs with sufficient primary/secondary amine groups could dissolve Ca-alginate hydrogel through site-specific mineralization method, accompanying by additional functions of antibacterial and hypoxia relief.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02729-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
On-demand dissolution of hydrogels has shown much potential in easy and pain-free removal of wound dressings. This work firstly describes a type of carbon dots (CDs) for dissolving Ca-alginate hydrogel via site-specific mineralization method. The CDs were characterized by two features, which included presence of primary/secondary amine groups and generation of calcium crystals with Ca2+. Especially, the amount of primary/secondary amine groups on CDs played key role in determining whether hydrogel could be dissolved. When there were sufficient primary/secondary amine groups, the mineralization occurred on CDs rather than alginates due to the hydrogen bond between primary/secondary amine and carboxyl of alginates. Thereby, this promoted the gel-sol transition through Ca2+ capture from the hydrogels. Moreover, antibacterial test revealed Ca2+ capture from cell walls, while in vivo test revealed hypoxia relief due to porous structures of the renewed hydrogels. Overall, CDs with sufficient primary/secondary amine groups could dissolve Ca-alginate hydrogel through site-specific mineralization method, accompanying by additional functions of antibacterial and hypoxia relief.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.