{"title":"Evolutionary neurogenomics at single-cell resolution","authors":"","doi":"10.1016/j.gde.2024.102239","DOIUrl":null,"url":null,"abstract":"<div><p>The human brain is composed of increasingly recognized heterogeneous cell types. Applying single-cell genomics to brain tissue can elucidate relative cell type proportions as well as differential gene expression and regulation among humans and other species. Here, we review recent studies that utilized high-throughput genomics approaches to compare brains among species at single-cell resolution. These studies identified genomic elements that are similar among species as well as evolutionary novelties on the human lineage. We focus on those human-relevant innovations and discuss the biological implications of these modifications. Finally, we discuss areas of comparative single-cell genomics that remain unexplored either due to needed technological advances or due to biological availability at the brain region or species level.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000881/pdfft?md5=45925ddbec221d9ab17882582d464ff4&pid=1-s2.0-S0959437X24000881-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000881","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human brain is composed of increasingly recognized heterogeneous cell types. Applying single-cell genomics to brain tissue can elucidate relative cell type proportions as well as differential gene expression and regulation among humans and other species. Here, we review recent studies that utilized high-throughput genomics approaches to compare brains among species at single-cell resolution. These studies identified genomic elements that are similar among species as well as evolutionary novelties on the human lineage. We focus on those human-relevant innovations and discuss the biological implications of these modifications. Finally, we discuss areas of comparative single-cell genomics that remain unexplored either due to needed technological advances or due to biological availability at the brain region or species level.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)