The inoculum dose of Zika virus can affect the viral replication dynamics, cytokine responses and survival rate in immunocompromised AG129 mice.

IF 6.3 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biomedicine Pub Date : 2024-08-03 DOI:10.1186/s43556-024-00195-x
Yuhuan Yan, Hao Yang, Yun Yang, Junbin Wang, Yanan Zhou, Cong Tang, Bai Li, Qing Huang, Ran An, Xiaoming Liang, Dongdong Lin, Wenhai Yu, Changfa Fan, Shuaiyao Lu
{"title":"The inoculum dose of Zika virus can affect the viral replication dynamics, cytokine responses and survival rate in immunocompromised AG129 mice.","authors":"Yuhuan Yan, Hao Yang, Yun Yang, Junbin Wang, Yanan Zhou, Cong Tang, Bai Li, Qing Huang, Ran An, Xiaoming Liang, Dongdong Lin, Wenhai Yu, Changfa Fan, Shuaiyao Lu","doi":"10.1186/s43556-024-00195-x","DOIUrl":null,"url":null,"abstract":"<p><p>Zika virus, a mosquito-borne arbovirus, has repeatedly caused large pandemics with symptoms worsening from mild and self-limiting diseases to Guillain-Barré syndrome in adults and fetal microcephaly in newborns. In recent years, Zika virus diseases have posed a serious threat to human health. The shortage of susceptible small animal models makes it difficult to study pathogenic mechanisms and evaluate potential therapies for Zika virus infection. Therefore, we chose immunocompromised mice (AG129 mice) deficient in IFN-α/β and IFN-γ receptors, which can abolish the innate immune system that prevents Zika virus infection early. AG129 mice were infected with the Zika virus, and this mouse model exhibited replication dynamics, tissue tropism, pathological lesion and immune activation of the Zika virus. Our results suggest that the inoculum dose of Zika virus can affect the viral replication dynamics, cytokine responses and survival rate in AG129 mice. By testing the potential antiviral drug favipiravir, several critical indicators, including replication dynamics and survival rates, were identified in AG129 mice after Zika virus infection. It is suggested that the model is reliable for drug evaluation. In brief, this model provides a potential platform for studies of the infectivity, virulence, and pathogenesis of the Zika virus. Moreover, the development of an accessible mouse model of Zika virus infection will expedite the research and deployment of therapeutics and vaccines.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-024-00195-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Zika virus, a mosquito-borne arbovirus, has repeatedly caused large pandemics with symptoms worsening from mild and self-limiting diseases to Guillain-Barré syndrome in adults and fetal microcephaly in newborns. In recent years, Zika virus diseases have posed a serious threat to human health. The shortage of susceptible small animal models makes it difficult to study pathogenic mechanisms and evaluate potential therapies for Zika virus infection. Therefore, we chose immunocompromised mice (AG129 mice) deficient in IFN-α/β and IFN-γ receptors, which can abolish the innate immune system that prevents Zika virus infection early. AG129 mice were infected with the Zika virus, and this mouse model exhibited replication dynamics, tissue tropism, pathological lesion and immune activation of the Zika virus. Our results suggest that the inoculum dose of Zika virus can affect the viral replication dynamics, cytokine responses and survival rate in AG129 mice. By testing the potential antiviral drug favipiravir, several critical indicators, including replication dynamics and survival rates, were identified in AG129 mice after Zika virus infection. It is suggested that the model is reliable for drug evaluation. In brief, this model provides a potential platform for studies of the infectivity, virulence, and pathogenesis of the Zika virus. Moreover, the development of an accessible mouse model of Zika virus infection will expedite the research and deployment of therapeutics and vaccines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寨卡病毒的接种剂量会影响免疫力低下的 AG129 小鼠的病毒复制动态、细胞因子反应和存活率。
寨卡病毒是一种由蚊子传播的虫媒病毒,曾多次引起大规模流行,症状从轻微的自限性疾病恶化为成人格林-巴利综合征和新生儿胎儿小头畸形。近年来,寨卡病毒疾病已对人类健康构成严重威胁。由于缺乏易感小动物模型,因此很难研究寨卡病毒感染的致病机制和评估潜在疗法。因此,我们选择了IFN-α/β和IFN-γ受体缺失的免疫功能低下小鼠(AG129小鼠),它可以取消先天性免疫系统,从而早期预防寨卡病毒感染。AG129 小鼠感染了寨卡病毒,该小鼠模型表现出寨卡病毒的复制动态、组织滋养、病理病变和免疫激活。我们的结果表明,寨卡病毒的接种剂量会影响 AG129 小鼠的病毒复制动态、细胞因子反应和存活率。通过测试潜在的抗病毒药物法非吡韦,我们确定了寨卡病毒感染后 AG129 小鼠的几个关键指标,包括复制动态和存活率。结果表明,该模型可用于药物评估。简而言之,该模型为研究寨卡病毒的感染性、毒性和致病机理提供了一个潜在的平台。此外,开发一种易于使用的寨卡病毒感染小鼠模型将加快治疗药物和疫苗的研究与应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
T cell receptor repertoire characteristics and therapeutic potential of tumor infiltrating lymphocytes (TILs) derived from metastatic lymph node in cervical cancer. Decorin-armed oncolytic adenovirus promotes natural killers (NKs) activation and infiltration to enhance NK therapy in CRC model. Post-translational modifications of fibrinogen: implications for clotting, fibrin structure and degradation. Systemic lupus erythematosus: pathogenesis and targeted therapy. The functions of apolipoproteins and lipoproteins in health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1