S. A. P. T. Samaraweera, M. M. M. Najim, Bader Alhafi Alotaibi, Abou Traore
{"title":"Impacts of a partially connected wastewater treatment plant on the water quality of stormwater drains used as an irrigation source","authors":"S. A. P. T. Samaraweera, M. M. M. Najim, Bader Alhafi Alotaibi, Abou Traore","doi":"10.3389/fenvs.2024.1412717","DOIUrl":null,"url":null,"abstract":"Urban stormwater drains in Kurunegala City collect runoff and untreated wastewater, leading to public health problems. The Greater Kurunegala Sewage Treatment Plant (GKSTP) was commissioned in 2018 and currently operates at 73% of its capacity to combat public health issues. This study assessed the water quality of canals, comparing it with standards and pre-GKSTP conditions. Water samples were collected from seven sites during dry and wet seasons, and physicochemical parameters were measured. The data underwent spatial and temporal analysis using the general linear model (GLM). Additionally, cluster analysis and distance-based redundancy analysis were employed. The water quality index (WQI) was employed to evaluate the effectiveness of the treatment plant. The study revealed significant spatial and temporal variations in physicochemical parameters along the canals (<jats:italic>p</jats:italic> &lt; 0.05, GLM), with higher pollution levels during wet months. The WQI improved from 35 (2005) to 49 at present, indicating enhanced water quality (<jats:italic>p</jats:italic> &lt; 0.05, ANOVA), although it remains unsatisfactory. This study provides novel insights into the limitations of conventional wastewater treatment practices, demonstrating that merely treating wastewater and discharging it back into canals is insufficient. Research underscores the importance of rethinking treated wastewater reuse in achieving multiple sustainable development goals (SDGs). This approach offers a pragmatic path forward for enhancing water security and environmental sustainability globally.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1412717","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban stormwater drains in Kurunegala City collect runoff and untreated wastewater, leading to public health problems. The Greater Kurunegala Sewage Treatment Plant (GKSTP) was commissioned in 2018 and currently operates at 73% of its capacity to combat public health issues. This study assessed the water quality of canals, comparing it with standards and pre-GKSTP conditions. Water samples were collected from seven sites during dry and wet seasons, and physicochemical parameters were measured. The data underwent spatial and temporal analysis using the general linear model (GLM). Additionally, cluster analysis and distance-based redundancy analysis were employed. The water quality index (WQI) was employed to evaluate the effectiveness of the treatment plant. The study revealed significant spatial and temporal variations in physicochemical parameters along the canals (p < 0.05, GLM), with higher pollution levels during wet months. The WQI improved from 35 (2005) to 49 at present, indicating enhanced water quality (p < 0.05, ANOVA), although it remains unsatisfactory. This study provides novel insights into the limitations of conventional wastewater treatment practices, demonstrating that merely treating wastewater and discharging it back into canals is insufficient. Research underscores the importance of rethinking treated wastewater reuse in achieving multiple sustainable development goals (SDGs). This approach offers a pragmatic path forward for enhancing water security and environmental sustainability globally.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.