Umar Farooq, Anjaneyulu Lokam, Sandhya Mallavarapu
{"title":"Compact planar 28/60-GHz wideband MIMO antenna for 5G-enabled IoT devices","authors":"Umar Farooq, Anjaneyulu Lokam, Sandhya Mallavarapu","doi":"10.1002/dac.5932","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work presents a compact two-element multi-input-multi-output (MIMO) antenna for 5G-enabled IoT devices. The antenna operates over a wide frequency range of 24.6 to 31.4 GHz (28-GHz band) and 57.6 to 60.2 GHz (60-GHz band). Each MIMO element consists of an inverted L-shaped slotted radiator with a partial ground plane. The antenna offers a peak gain of 5.45 and 5.56 dBi across two operating bands. The minimum isolation between the two ports is −26.5 dB, reaching a maximum value of over −45 dB. The investigation of MIMO metrics like “envelope correlation coefficient (ECC),” “diversity gain (DG),” “mean effective gain (MEG),” “channel capacity loss (CCL),” and “total active reflection coefficient (TARC)” also show favorable characteristics. The antenna is fabricated on a 10 × 22 × 0.503 mm<sup>3</sup> Rogers 5880 substrate. The experimental results are in close agreement with that of the simulation results. The distinguishing features of the proposed antenna such as its compact design, simple geometrical configuration, wide operating bandwidth, low ECC, and high isolation make it a strong candidate for 5G-enabled IoT devices.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5932","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a compact two-element multi-input-multi-output (MIMO) antenna for 5G-enabled IoT devices. The antenna operates over a wide frequency range of 24.6 to 31.4 GHz (28-GHz band) and 57.6 to 60.2 GHz (60-GHz band). Each MIMO element consists of an inverted L-shaped slotted radiator with a partial ground plane. The antenna offers a peak gain of 5.45 and 5.56 dBi across two operating bands. The minimum isolation between the two ports is −26.5 dB, reaching a maximum value of over −45 dB. The investigation of MIMO metrics like “envelope correlation coefficient (ECC),” “diversity gain (DG),” “mean effective gain (MEG),” “channel capacity loss (CCL),” and “total active reflection coefficient (TARC)” also show favorable characteristics. The antenna is fabricated on a 10 × 22 × 0.503 mm3 Rogers 5880 substrate. The experimental results are in close agreement with that of the simulation results. The distinguishing features of the proposed antenna such as its compact design, simple geometrical configuration, wide operating bandwidth, low ECC, and high isolation make it a strong candidate for 5G-enabled IoT devices.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.