Bilevel access control and constraint-aware response provisioning in edge-enabled software defined network-internet of things network using the safeguard authentication dynamic access control model
{"title":"Bilevel access control and constraint-aware response provisioning in edge-enabled software defined network-internet of things network using the safeguard authentication dynamic access control model","authors":"Sahana D S, Brahmananda S H","doi":"10.1002/dac.5946","DOIUrl":null,"url":null,"abstract":"<p>By controlling the network, the Internet of Things (IoT)-connected software-defined network (SDN) limits the scalability of IoT devices. Since SDN depends on a centralized controller that attackers can easily affect, it is incredibly susceptible to attacks. Secure access control to the SDN controller was the focus of the prior methods for controller scalability and restricted trust management. A framework called Safeguard Authentication Dynamic Access Control (SANDMAC) is suggested to safeguard and offer useful services to enterprises. Authentication confirms legitimacy after all users and applications have been registered. To improve network security, policies let users grant access to account attributes, legal activities, and temporal components. The administrator lessens conflicts between the methods by validating and saving the policies in the database. The services are provided to dependable customers using the forensic-based investigation algorithm, depending on the quality of service and software level agreements requirements, decreasing reaction times and maximizing resource usage. Performance comparisons between the new and previous efforts are validated using a variety of parameters, and the proposed work is validated using the iFogSim application. According to the findings, SANDMAC significantly raises key performance indicators. SANDMAC specifically keeps false positives at 3.5% and accomplishes a low response time of 60 ms for roughly 800 authorized accesses. SANDMAC is a better option because of these enhancements, which result in longer network lifetimes and more dependable data transmission.</p>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 18","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dac.5946","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5946","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
By controlling the network, the Internet of Things (IoT)-connected software-defined network (SDN) limits the scalability of IoT devices. Since SDN depends on a centralized controller that attackers can easily affect, it is incredibly susceptible to attacks. Secure access control to the SDN controller was the focus of the prior methods for controller scalability and restricted trust management. A framework called Safeguard Authentication Dynamic Access Control (SANDMAC) is suggested to safeguard and offer useful services to enterprises. Authentication confirms legitimacy after all users and applications have been registered. To improve network security, policies let users grant access to account attributes, legal activities, and temporal components. The administrator lessens conflicts between the methods by validating and saving the policies in the database. The services are provided to dependable customers using the forensic-based investigation algorithm, depending on the quality of service and software level agreements requirements, decreasing reaction times and maximizing resource usage. Performance comparisons between the new and previous efforts are validated using a variety of parameters, and the proposed work is validated using the iFogSim application. According to the findings, SANDMAC significantly raises key performance indicators. SANDMAC specifically keeps false positives at 3.5% and accomplishes a low response time of 60 ms for roughly 800 authorized accesses. SANDMAC is a better option because of these enhancements, which result in longer network lifetimes and more dependable data transmission.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.