High-α maneuver under lateral centre of gravity uncertainty: A robust adaptive backstepping control scheme

Anukaran Khanna, Bijoy K Mukherjee, Manoranjan Sinha
{"title":"High-α maneuver under lateral centre of gravity uncertainty: A robust adaptive backstepping control scheme","authors":"Anukaran Khanna, Bijoy K Mukherjee, Manoranjan Sinha","doi":"10.1177/09544100241263613","DOIUrl":null,"url":null,"abstract":"The present note addresses the novel problem of executing complex aircraft maneuvers under considerable center of gravity (c.g.) uncertainties arising from asymmetrical loading or release of payloads, uneven fuel consumption etc. First, the aircraft flight dynamics under predominantly lateral c.g. movement, is approximated and expressed in a block strict feedback form and thereafter an adaptive backstepping controller is proposed to adapt to the c.g. variations. To alleviate the model uncertainty caused by this model approximation and also to provide robustness to aerodynamic uncertainties in high-alpha regions, a sliding mode control is further integrated with the adaptive backstepping control law. Asymptotic stability conditions of the proposed controller are derived from the first principle using Lyapunov’s method and Barbalat’s lemma. To validate the proposed control scheme, the high-alpha Herbst maneuver is implemented in simulation for the F18-HARV aircraft and the results show that the maneuver performance remains nearly the same under both the nominal and the off-nominal c.g. positions.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241263613","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The present note addresses the novel problem of executing complex aircraft maneuvers under considerable center of gravity (c.g.) uncertainties arising from asymmetrical loading or release of payloads, uneven fuel consumption etc. First, the aircraft flight dynamics under predominantly lateral c.g. movement, is approximated and expressed in a block strict feedback form and thereafter an adaptive backstepping controller is proposed to adapt to the c.g. variations. To alleviate the model uncertainty caused by this model approximation and also to provide robustness to aerodynamic uncertainties in high-alpha regions, a sliding mode control is further integrated with the adaptive backstepping control law. Asymptotic stability conditions of the proposed controller are derived from the first principle using Lyapunov’s method and Barbalat’s lemma. To validate the proposed control scheme, the high-alpha Herbst maneuver is implemented in simulation for the F18-HARV aircraft and the results show that the maneuver performance remains nearly the same under both the nominal and the off-nominal c.g. positions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
横向重心不确定情况下的高α机动:鲁棒性自适应反步进控制方案
本论文探讨了在重心(c.g.)不确定的情况下执行复杂飞机机动的新问题,这种不确定是由有效载荷的非对称装载或释放、不均匀的燃料消耗等引起的。首先,对飞机在重心横向移动为主的情况下的飞行动力学进行了近似,并以块严格反馈的形式进行了表达,随后提出了一种自适应反步进控制器,以适应重心的变化。为了减轻由模型近似引起的模型不确定性,同时也为了在高α区域提供对空气动力不确定性的鲁棒性,进一步将滑动模式控制与自适应反步进控制法整合在一起。利用 Lyapunov 方法和 Barbalat Lemma,从第一原理推导出了拟议控制器的渐近稳定性条件。为了验证所提出的控制方案,对 F18-HARV 飞机实施了高α Herbst 机动模拟,结果表明,在标称和非标称 c.g. 位置下,机动性能几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1