Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution

Mridul Khurana, Arka Daw, M. Maruf, Josef C. Uyeda, Wasila Dahdul, Caleb Charpentier, Yasin Bakış, Henry L. Bart Jr., Paula M. Mabee, Hilmar Lapp, James P. Balhoff, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Anuj Karpatne
{"title":"Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution","authors":"Mridul Khurana, Arka Daw, M. Maruf, Josef C. Uyeda, Wasila Dahdul, Caleb Charpentier, Yasin Bakış, Henry L. Bart Jr., Paula M. Mabee, Hilmar Lapp, James P. Balhoff, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Anuj Karpatne","doi":"arxiv-2408.00160","DOIUrl":null,"url":null,"abstract":"A central problem in biology is to understand how organisms evolve and adapt\nto their environment by acquiring variations in the observable characteristics\nor traits of species across the tree of life. With the growing availability of\nlarge-scale image repositories in biology and recent advances in generative\nmodeling, there is an opportunity to accelerate the discovery of evolutionary\ntraits automatically from images. Toward this goal, we introduce\nPhylo-Diffusion, a novel framework for conditioning diffusion models with\nphylogenetic knowledge represented in the form of HIERarchical Embeddings\n(HIER-Embeds). We also propose two new experiments for perturbing the embedding\nspace of Phylo-Diffusion: trait masking and trait swapping, inspired by\ncounterpart experiments of gene knockout and gene editing/swapping. Our work\nrepresents a novel methodological advance in generative modeling to structure\nthe embedding space of diffusion models using tree-based knowledge. Our work\nalso opens a new chapter of research in evolutionary biology by using\ngenerative models to visualize evolutionary changes directly from images. We\nempirically demonstrate the usefulness of Phylo-Diffusion in capturing\nmeaningful trait variations for fishes and birds, revealing novel insights\nabout the biological mechanisms of their evolution.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A central problem in biology is to understand how organisms evolve and adapt to their environment by acquiring variations in the observable characteristics or traits of species across the tree of life. With the growing availability of large-scale image repositories in biology and recent advances in generative modeling, there is an opportunity to accelerate the discovery of evolutionary traits automatically from images. Toward this goal, we introduce Phylo-Diffusion, a novel framework for conditioning diffusion models with phylogenetic knowledge represented in the form of HIERarchical Embeddings (HIER-Embeds). We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping, inspired by counterpart experiments of gene knockout and gene editing/swapping. Our work represents a novel methodological advance in generative modeling to structure the embedding space of diffusion models using tree-based knowledge. Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images. We empirically demonstrate the usefulness of Phylo-Diffusion in capturing meaningful trait variations for fishes and birds, revealing novel insights about the biological mechanisms of their evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生命之树对扩散模型进行分层调节以研究物种进化
生物学的一个核心问题是了解生物是如何通过获得整个生命树中物种的可观测特征或性状的变化来进化和适应环境的。随着生物学中大规模图像资源库的不断增加以及生成模型的最新进展,我们有机会加速从图像中自动发现进化特征。为了实现这一目标,我们介绍了 "HIER-扩散"(Phylo-Diffusion),这是一种利用以 HIERarchical Embeddings(HIER-Embeds)形式表示的系统发育知识来调节扩散模型的新型框架。我们还提出了两个扰动 Phylo-Diffusion 嵌入空间的新实验:性状掩蔽和性状交换,这两个实验的灵感来自基因敲除和基因编辑/交换的对应实验。我们的工作代表了生成建模在方法论上的新进展,即利用基于树的知识来构建扩散模型的嵌入空间。我们的工作还开启了进化生物学研究的新篇章,利用生成模型直接从图像中可视化进化变化。我们经验性地证明了植物扩散模型在捕捉鱼类和鸟类有意义的性状变化方面的实用性,揭示了有关它们进化的生物学机制的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1