Age Estimation of Young Asteroid Pairs

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Solar System Research Pub Date : 2024-08-01 DOI:10.1134/s0038094624700473
V. S. Safronova, E. D. Kuznetsov
{"title":"Age Estimation of Young Asteroid Pairs","authors":"V. S. Safronova, E. D. Kuznetsov","doi":"10.1134/s0038094624700473","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>In order to estimate the age, the work examined the probabilistic evolution of three young pairs of asteroids in close orbits: (87 887) 2000 SS286—(415 992) 2002 AT49, (320 025) 2007 DT76—(489 464) 2007 DP16, (21 436) Chaoyichi—(334 916) 2003 YK39. In the numerical simulation, along with gravitational disturbances, the Yarkovsky effect in the form of a secular drift of the orbital semimajor axis was taken into account. For each pair of asteroids, 25 evolution scenarios were considered, corresponding to different combinations of obliquities of the asteroids’ rotation axes and, correspondingly, different drift rates of the semimajor axes due to the Yarkovsky effect. For each asteroid, 1000 clones were generated. Age estimates were obtained based on analysis of moment distributions: (1) low relative-velocity close encounters of asteroids of pair to distances on the order of the Hill sphere at a relative speed of several units of the escape velocity and (2) achievement of minimum values of the Kholshevnikov metric, which characterizes the distance between orbits<i>.</i> The following age estimates for young asteroid pairs were obtained: (87 887) 2000 SS286 and (415 992) 2002 AT49 from 7.58 ± 0.04 to 8.80 ± 0.04 kyr; (320 025) 2007 DT76 and (489464) 2007 DP16 from 15.5 ± 1.0 to 58.6 ± 16.0 kyr; (21 436) Chaoyichi and (334 916) 2003 YK39 from 32.3 ± 0.1 to 102.6 ± 0.7 kyr.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094624700473","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to estimate the age, the work examined the probabilistic evolution of three young pairs of asteroids in close orbits: (87 887) 2000 SS286—(415 992) 2002 AT49, (320 025) 2007 DT76—(489 464) 2007 DP16, (21 436) Chaoyichi—(334 916) 2003 YK39. In the numerical simulation, along with gravitational disturbances, the Yarkovsky effect in the form of a secular drift of the orbital semimajor axis was taken into account. For each pair of asteroids, 25 evolution scenarios were considered, corresponding to different combinations of obliquities of the asteroids’ rotation axes and, correspondingly, different drift rates of the semimajor axes due to the Yarkovsky effect. For each asteroid, 1000 clones were generated. Age estimates were obtained based on analysis of moment distributions: (1) low relative-velocity close encounters of asteroids of pair to distances on the order of the Hill sphere at a relative speed of several units of the escape velocity and (2) achievement of minimum values of the Kholshevnikov metric, which characterizes the distance between orbits. The following age estimates for young asteroid pairs were obtained: (87 887) 2000 SS286 and (415 992) 2002 AT49 from 7.58 ± 0.04 to 8.80 ± 0.04 kyr; (320 025) 2007 DT76 and (489464) 2007 DP16 from 15.5 ± 1.0 to 58.6 ± 16.0 kyr; (21 436) Chaoyichi and (334 916) 2003 YK39 from 32.3 ± 0.1 to 102.6 ± 0.7 kyr.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
年轻小行星对的年龄估计
摘要 为了估算年龄,这项工作研究了三对年轻的近轨道小行星的概率演变:(87 887) 2000 SS286-(415 992) 2002 AT49、(320 025) 2007 DT76-(489 464) 2007 DP16、(21 436) Chaoyichi-(334 916) 2003 YK39。在数值模拟中,除了引力扰动外,还考虑了以轨道半长轴周期漂移形式出现的雅尔科夫斯基效应。针对每对小行星,考虑了 25 种演化情况,对应于小行星旋转轴的不同斜度组合,以及相应的雅尔科夫斯基效应导致的不同半主轴漂移率。每颗小行星生成 1000 个克隆。年龄估计是根据对矩分布的分析得出的:(1)一对小行星以希尔球数量级的低相对速度近距离相遇,相对速度为逃逸速度的几个单位;(2)达到霍尔舍夫尼科夫度量的最小值,该度量表征了轨道之间的距离。年轻小行星对的年龄估计如下:(87 887) 2000 SS286 和 (415 992) 2002 AT49 从 7.58 ± 0.04 千年到 8.80 ± 0.04 千年;(320 025) 2007 DT76 和 (489464) 2007 DP16 从 15.5 ± 1.0 千年到 58.6 ± 16.0 千年;(21 436) Chaoyichi 和 (334 916) 2003 YK39 从 32.3 ± 0.1 千年到 102.6 ± 0.7 千年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
期刊最新文献
Impact Craters on Earth with a Diameter of More than 200 km: Numerical Modeling Determining Optimal Parameters for Mercury’s Magnetospheric Current Systems from MESSENGER Observations Analysis of Water in the Regolith of the Moon Using the LASMA-LR Instrument During the Luna-27 Mission Propagation of Hydromagnetic Disturbance Waves and Gravitational Instability in a Magnetized Rotating Heat-Conducting Anisotropic Plasma On the Nature of Electrophone Phenomena Accompanying the Passage of Meteoric Bodies through the Earth’s Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1