Inside Cover Picture

IF 5.5 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chinese Journal of Chemistry Pub Date : 2024-08-01 DOI:10.1002/cjoc.202490172
{"title":"Inside Cover Picture","authors":"","doi":"10.1002/cjoc.202490172","DOIUrl":null,"url":null,"abstract":"<p>A machine learning-based comprehensive Bond Dissociation Energy (BDE) prediction model was established, which is useful for understanding the chemical properties and reactivities of molecules. Differential Structural and PhysicOChemical (D-SPOC) descriptors that reflected changes in molecules’ structural and physicochemical features in the process of bond homolysis were developed as input features, which enabled the precise prediction. More details are discussed in the article by Zhang <i>et al</i>. on page 1967—1974.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 17","pages":"1942"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjoc.202490172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202490172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A machine learning-based comprehensive Bond Dissociation Energy (BDE) prediction model was established, which is useful for understanding the chemical properties and reactivities of molecules. Differential Structural and PhysicOChemical (D-SPOC) descriptors that reflected changes in molecules’ structural and physicochemical features in the process of bond homolysis were developed as input features, which enabled the precise prediction. More details are discussed in the article by Zhang et al. on page 1967—1974.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封面内页图片
建立了基于机器学习的综合键解离能(BDE)预测模型,该模型有助于理解分子的化学性质和反应活性。开发了反映分子在键同解过程中结构和物理化学特征变化的差异结构和物理化学(D-SPOC)描述符作为输入特征,从而实现了精确预测。更多详情请参见 Zhang 等人的文章(第 1967-1974 页)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Chemistry
Chinese Journal of Chemistry 化学-化学综合
CiteScore
8.80
自引率
14.80%
发文量
422
审稿时长
1.7 months
期刊介绍: The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.
期刊最新文献
Inside Back Cover Back Cover Contents Cover Picture Meet Our New Associate Editor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1