Accurate and fast damage thickness estimation in concrete using handheld GPR and spectral pattern matching

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Structural Engineering Pub Date : 2024-08-02 DOI:10.1177/13694332241267909
Tsukasa Mizutani, Shunsuke Iwai
{"title":"Accurate and fast damage thickness estimation in concrete using handheld GPR and spectral pattern matching","authors":"Tsukasa Mizutani, Shunsuke Iwai","doi":"10.1177/13694332241267909","DOIUrl":null,"url":null,"abstract":"Handheld Ground Penetrating Radar (GPR) is utilized for detecting rebar, but detecting damage is difficult due to its low reflectance. This study introduces an algorithm to quantitatively estimate damage thickness from GPR-received waveforms. Simple methods to separate peaks from time waveforms at the top and bottom of the crack prove challenging due to destructive interference and side lobes. In previous studies, it has been confirmed that minor variations in damage thickness affect the frequency property. We propose an algorithm to estimate damage thickness using pattern matching with a theoretical amplitude spectrum that accounts for multiple reflections. Initially, the damage thickness is roughly determined by combining low-frequency spectrum centroids with spectrum amplitude. After roughly estimating the damage thickness, subsequent spectral pattern matching is performed within predefined gating and bandwidth ranges. This approach enables quantitative estimation of damage thickness from 2 mm to 180 mm with a millimeter order accuracy, demonstrating its practical application potential.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241267909","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Handheld Ground Penetrating Radar (GPR) is utilized for detecting rebar, but detecting damage is difficult due to its low reflectance. This study introduces an algorithm to quantitatively estimate damage thickness from GPR-received waveforms. Simple methods to separate peaks from time waveforms at the top and bottom of the crack prove challenging due to destructive interference and side lobes. In previous studies, it has been confirmed that minor variations in damage thickness affect the frequency property. We propose an algorithm to estimate damage thickness using pattern matching with a theoretical amplitude spectrum that accounts for multiple reflections. Initially, the damage thickness is roughly determined by combining low-frequency spectrum centroids with spectrum amplitude. After roughly estimating the damage thickness, subsequent spectral pattern matching is performed within predefined gating and bandwidth ranges. This approach enables quantitative estimation of damage thickness from 2 mm to 180 mm with a millimeter order accuracy, demonstrating its practical application potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用手持式 GPR 和光谱模式匹配准确快速地估算混凝土中的损伤厚度
手持式地面穿透雷达 (GPR) 可用于探测钢筋,但由于其反射率较低,因此很难探测损坏情况。本研究介绍了一种从 GPR 接收波形中定量估算损坏厚度的算法。由于破坏性干扰和侧叶,从裂缝顶部和底部的时间波形中分离峰值的简单方法证明具有挑战性。在之前的研究中,已经证实损伤厚度的微小变化会影响频率特性。我们提出了一种算法,利用模式匹配与理论振幅频谱(考虑到多重反射)来估算损伤厚度。最初,通过将低频频谱中心点与频谱振幅相结合来大致确定损伤厚度。在大致估算出损伤厚度后,在预定义的选通和带宽范围内进行后续的频谱模式匹配。这种方法能够以毫米级的精度定量估计从 2 毫米到 180 毫米的损伤厚度,显示了其实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
期刊最新文献
Multi-experimental seismic analysis of low-rise thin reinforced concrete wall building with unconnected elastomeric isolators using real-time hybrid simulations Prediction and optimization framework of shear strength of reinforced concrete flanged shear wall based on machine learning and non-dominated sorting genetic algorithm-II Deep learning-based minute-scale digital prediction model for temperature induced deflection of a multi-tower double-layer steel truss bridge Experimental investigation on shear behavior of double-row perforated GFRP rib connectors in FRP-concrete hybrid beams Seismic response prediction method of train-bridge coupled system based on convolutional neural network-bidirectional long short-term memory-attention modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1