Ride comfort and impact factor of a seven-span continuous cable-stayed bridge

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Structural Engineering Pub Date : 2024-08-01 DOI:10.1177/13694332241269259
Chul-Woo Kim, Shinya Kimura, Hiroki Sugiyama, Akinori Sato, Kazuyuki Ono
{"title":"Ride comfort and impact factor of a seven-span continuous cable-stayed bridge","authors":"Chul-Woo Kim, Shinya Kimura, Hiroki Sugiyama, Akinori Sato, Kazuyuki Ono","doi":"10.1177/13694332241269259","DOIUrl":null,"url":null,"abstract":"This study was conducted to investigate the vibration serviceability and impact coefficient of a seven-span continuous cable-stayed bridge planned for an expressway extension using a three-dimensional vehicle–bridge coupled vibration analysis. For the bridge design, deflection under the designed live load of the continuous cable-stayed bridge did not meet the deflection limit specified in “Japanese Design Specifications for Highway Bridges.” The excessive deflection indicates the possibility of poor vibration serviceability. To clarify the bridge vibration serviceability, the dynamic responses of the bridge and passing vehicles were examined using the three-dimensional vehicle–bridge coupled vibration analysis. The three-dimensional analysis was validated by comparing the vibration response of a single-span steel cable-stayed bridge in service subjected to vehicle running tests with those numerical responses from the three-dimensional analysis. The ride comfort of vehicles on the bridge was assessed in terms of vibration serviceability according to the ISO 2613-1 international standard for evaluating whole-body vibration exposure. The observation from the simulation-based investigation demonstrated that the vehicle response does not exceed the ride comfort limit irrespective of vehicle, road, and running conditions. In other words, the findings confirmed a negligible effect of large deflections on driving safety. The impact factors were found to be less than 1.05 for the main girder, less than 1.03 for the main tower base, and less than 1.04 for the cable. The impact factor was greatest when several vehicles were running at resonant headway.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241269259","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study was conducted to investigate the vibration serviceability and impact coefficient of a seven-span continuous cable-stayed bridge planned for an expressway extension using a three-dimensional vehicle–bridge coupled vibration analysis. For the bridge design, deflection under the designed live load of the continuous cable-stayed bridge did not meet the deflection limit specified in “Japanese Design Specifications for Highway Bridges.” The excessive deflection indicates the possibility of poor vibration serviceability. To clarify the bridge vibration serviceability, the dynamic responses of the bridge and passing vehicles were examined using the three-dimensional vehicle–bridge coupled vibration analysis. The three-dimensional analysis was validated by comparing the vibration response of a single-span steel cable-stayed bridge in service subjected to vehicle running tests with those numerical responses from the three-dimensional analysis. The ride comfort of vehicles on the bridge was assessed in terms of vibration serviceability according to the ISO 2613-1 international standard for evaluating whole-body vibration exposure. The observation from the simulation-based investigation demonstrated that the vehicle response does not exceed the ride comfort limit irrespective of vehicle, road, and running conditions. In other words, the findings confirmed a negligible effect of large deflections on driving safety. The impact factors were found to be less than 1.05 for the main girder, less than 1.03 for the main tower base, and less than 1.04 for the cable. The impact factor was greatest when several vehicles were running at resonant headway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
七跨连续斜拉桥的乘坐舒适性和冲击系数
本研究采用三维车辆-桥梁耦合振动分析方法,对计划用于高速公路扩建的七跨连续斜拉桥的振动适用性和冲击系数进行了研究。在桥梁设计中,连续斜拉桥在设计活载作用下的挠度不符合 "日本公路桥梁设计规范 "中规定的挠度限值。过大的挠度表明振动适用性可能很差。为明确桥梁的振动适用性,采用三维车辆-桥梁耦合振动分析法对桥梁和过往车辆的动态响应进行了研究。通过比较一座单跨钢斜拉桥在车辆行驶试验中的振动响应与三维分析得出的数值响应,验证了三维分析的有效性。根据 ISO 2613-1 评估全身振动暴露的国际标准,从振动适用性的角度对桥梁上车辆的乘坐舒适性进行了评估。模拟调查的结果表明,无论车辆、道路和运行条件如何,车辆的响应都不会超过乘坐舒适性的限制。换句话说,研究结果证实大偏差对驾驶安全的影响可以忽略不计。研究发现,主梁的影响系数小于 1.05,主塔基的影响系数小于 1.03,拉索的影响系数小于 1.04。当多辆车以共振车速行驶时,影响系数最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
期刊最新文献
Multi-experimental seismic analysis of low-rise thin reinforced concrete wall building with unconnected elastomeric isolators using real-time hybrid simulations Prediction and optimization framework of shear strength of reinforced concrete flanged shear wall based on machine learning and non-dominated sorting genetic algorithm-II Deep learning-based minute-scale digital prediction model for temperature induced deflection of a multi-tower double-layer steel truss bridge Experimental investigation on shear behavior of double-row perforated GFRP rib connectors in FRP-concrete hybrid beams Seismic response prediction method of train-bridge coupled system based on convolutional neural network-bidirectional long short-term memory-attention modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1