The Energy Cost of Artificial Intelligence of Things Lifecycle

Shih-Kai Chou, Jernej Hribar, Mihael Mohorčič, Carolina Fortuna
{"title":"The Energy Cost of Artificial Intelligence of Things Lifecycle","authors":"Shih-Kai Chou, Jernej Hribar, Mihael Mohorčič, Carolina Fortuna","doi":"arxiv-2408.00540","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI)coupled with existing Internet of Things (IoT)\nenables more streamlined and autonomous operations across various economic\nsectors. Consequently, the paradigm of Artificial Intelligence of Things (AIoT)\nhaving AI techniques at its core implies additional energy and carbon costs\nthat may become significant with more complex neural architectures. To better\nunderstand the energy and Carbon Footprint (CF) of some AIoT components, very\nrecent studies employ conventional metrics. However, these metrics are not\ndesigned to capture energy efficiency aspects of inference. In this paper, we\npropose a new metric, the Energy Cost of AIoT Lifecycle (eCAL) to capture the\noverall energy cost of inference over the lifecycle of an AIoT system. We\ndevise a new methodology for determining eCAL of an AIoT system by analyzing\nthe complexity of data manipulation in individual components involved in the\nAIoT lifecycle and derive the overall and per bit energy consumption. With eCAL\nwe show that the better a model is and the more it is used, the more energy\nefficient an inference is. For an example AIoT configuration, eCAL for making\n$100$ inferences is $1.43$ times higher than for $1000$ inferences. We also\nevaluate the CF of the AIoT system by calculating the equivalent CO$_{2}$\nemissions based on the energy consumption and the Carbon Intensity (CI) across\ndifferent countries. Using 2023 renewable data, our analysis reveals that\ndeploying an AIoT system in Germany results in emitting $4.62$ times higher\nCO$_2$ than in Finland, due to latter using more low-CI energy sources.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI)coupled with existing Internet of Things (IoT) enables more streamlined and autonomous operations across various economic sectors. Consequently, the paradigm of Artificial Intelligence of Things (AIoT) having AI techniques at its core implies additional energy and carbon costs that may become significant with more complex neural architectures. To better understand the energy and Carbon Footprint (CF) of some AIoT components, very recent studies employ conventional metrics. However, these metrics are not designed to capture energy efficiency aspects of inference. In this paper, we propose a new metric, the Energy Cost of AIoT Lifecycle (eCAL) to capture the overall energy cost of inference over the lifecycle of an AIoT system. We devise a new methodology for determining eCAL of an AIoT system by analyzing the complexity of data manipulation in individual components involved in the AIoT lifecycle and derive the overall and per bit energy consumption. With eCAL we show that the better a model is and the more it is used, the more energy efficient an inference is. For an example AIoT configuration, eCAL for making $100$ inferences is $1.43$ times higher than for $1000$ inferences. We also evaluate the CF of the AIoT system by calculating the equivalent CO$_{2}$ emissions based on the energy consumption and the Carbon Intensity (CI) across different countries. Using 2023 renewable data, our analysis reveals that deploying an AIoT system in Germany results in emitting $4.62$ times higher CO$_2$ than in Finland, due to latter using more low-CI energy sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能物联网生命周期的能源成本
人工智能(AI)与现有的物联网(IoT)相结合,使各经济部门的运作更加合理和自主。因此,以人工智能技术为核心的人工智能物联网(AIoT)模式意味着额外的能源和碳成本,而随着神经架构变得更加复杂,这些成本可能会变得非常高昂。为了更好地了解一些人工智能物联网组件的能源和碳足迹(CF),最近的研究采用了传统的指标。然而,这些指标并不是为了捕捉推理的能效方面而设计的。在本文中,我们提出了一个新指标--人工智能物联网生命周期能源成本(eCAL),以捕捉人工智能物联网系统生命周期内推理的总体能源成本。我们通过分析参与人工智能物联网生命周期的各个组件中数据操作的复杂性,提出了一种确定人工智能物联网系统 eCAL 的新方法,并推导出整体能耗和每比特能耗。eCAL 表明,模型越好、使用越多,推理的能效就越高。在一个 AIoT 配置示例中,进行 100 美元推理的 eCAL 是进行 1000 美元推理的 1.43 美元。我们还通过计算不同国家基于能源消耗和碳强度(CI)的等效 CO$_{2}$ 排放量来评估 AIoT 系统的 CF。利用 2023 年的可再生数据,我们的分析表明,在德国部署 AIoT 系统的 CO$_{2}$ 排放量是芬兰的 4.62$ 倍,原因是后者使用了更多低碳强度能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1