Neil C. Cole-Filipiak, Jan Troß, Paul Schrader, Laura M. McCaslin, Krupa Ramasesha
{"title":"Ultrafast Production of NiCO and Ni Following 197 nm Photodissociation of Nickel Tetracarbonyl","authors":"Neil C. Cole-Filipiak, Jan Troß, Paul Schrader, Laura M. McCaslin, Krupa Ramasesha","doi":"10.1021/acsphyschemau.4c00033","DOIUrl":null,"url":null,"abstract":"Herein, we report on the ultrafast photodissociation of nickel tetracarbonyl─a prototypical metal–ligand model system─at 197 nm. Using mid-infrared transient absorption spectroscopy to probe the bound C≡O stretching modes, we find evidence for the picosecond time scale production of highly vibronically excited nickel dicarbonyl and nickel monocarbonyl, in marked contrast with a prior investigation at 193 nm. Further spectral evolution with a 50 ps time constant suggests an additional dissociation step; the absence of any corresponding growth in signal strongly indicates the production of bare Ni, a heretofore unreported product from single-photon excitation of nickel tetracarbonyl. Thus, by probing the deep UV-induced photodynamics of a prototypical metal carbonyl, this Letter adds time-resolved spectroscopic signatures of these dynamics to the sparse literature at high excitation energies.","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"19 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we report on the ultrafast photodissociation of nickel tetracarbonyl─a prototypical metal–ligand model system─at 197 nm. Using mid-infrared transient absorption spectroscopy to probe the bound C≡O stretching modes, we find evidence for the picosecond time scale production of highly vibronically excited nickel dicarbonyl and nickel monocarbonyl, in marked contrast with a prior investigation at 193 nm. Further spectral evolution with a 50 ps time constant suggests an additional dissociation step; the absence of any corresponding growth in signal strongly indicates the production of bare Ni, a heretofore unreported product from single-photon excitation of nickel tetracarbonyl. Thus, by probing the deep UV-induced photodynamics of a prototypical metal carbonyl, this Letter adds time-resolved spectroscopic signatures of these dynamics to the sparse literature at high excitation energies.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis