A Crowd Load Model for Structural Vibration Evaluation of Building Cover in a Large-Span Railway Station

IF 1.9 4区 工程技术 Q3 ENGINEERING, CIVIL KSCE Journal of Civil Engineering Pub Date : 2024-08-03 DOI:10.1007/s12205-024-2520-3
Huiqi Liang, Tianhao Huo, Wenbo Xie, Qiang Hong, Zhiqiang Zhang, Peizi Wei, Yijing Lu
{"title":"A Crowd Load Model for Structural Vibration Evaluation of Building Cover in a Large-Span Railway Station","authors":"Huiqi Liang, Tianhao Huo, Wenbo Xie, Qiang Hong, Zhiqiang Zhang, Peizi Wei, Yijing Lu","doi":"10.1007/s12205-024-2520-3","DOIUrl":null,"url":null,"abstract":"<p>With the application of large-span building covers in high-speed railway stations, the issue of structural vibration comfort induced by crowd walking has aroused the attention of researchers. The randomness of the crowd flow on large-span building covers, combined with the conventional method adopting the worst load case to evaluate the human-induced structural vibration, leads to larger response results and a significant deviation from the actual scenario. In this study, a novel crowd-load model considering the inherent dual randomness associated with the trajectory of the crowd and walking load is proposed. It is developed by integrating the social force model with a random single person walking load. In addition, a corresponding framework for structural vibration calculation is proposed as well. Three crowd-loading models are established, accounting for randomness, by combining with the finite element model of the thin plate structure. The vibration response of the floor slab under crowd excitation was assessed in the waiting hall of Xiong'an high-speed railway station. Numerical simulation calculations were performed, comparing the results for three different types of crowd load. The findings indicate a significant reduction in the vibration response of the large-span waiting hall when employing the load model incorporating the social force model. This serves as a correction to the overly conservative nature of the conventional load model.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-2520-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the application of large-span building covers in high-speed railway stations, the issue of structural vibration comfort induced by crowd walking has aroused the attention of researchers. The randomness of the crowd flow on large-span building covers, combined with the conventional method adopting the worst load case to evaluate the human-induced structural vibration, leads to larger response results and a significant deviation from the actual scenario. In this study, a novel crowd-load model considering the inherent dual randomness associated with the trajectory of the crowd and walking load is proposed. It is developed by integrating the social force model with a random single person walking load. In addition, a corresponding framework for structural vibration calculation is proposed as well. Three crowd-loading models are established, accounting for randomness, by combining with the finite element model of the thin plate structure. The vibration response of the floor slab under crowd excitation was assessed in the waiting hall of Xiong'an high-speed railway station. Numerical simulation calculations were performed, comparing the results for three different types of crowd load. The findings indicate a significant reduction in the vibration response of the large-span waiting hall when employing the load model incorporating the social force model. This serves as a correction to the overly conservative nature of the conventional load model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大跨度火车站建筑盖板结构振动评估的人群荷载模型
随着大跨度建筑盖板在高速铁路车站的应用,人群行走引起的结构振动舒适性问题引起了研究人员的关注。由于大跨度建筑盖板上人流的随机性,加之传统方法采用最坏荷载情况来评估人体诱发的结构振动,导致响应结果较大,与实际情况有明显偏差。本研究提出了一种新的人群荷载模型,该模型考虑了与人群轨迹和行走荷载相关的内在双重随机性。该模型是通过将社会力模型与随机单人行走负载相结合而建立的。此外,还提出了相应的结构振动计算框架。通过与薄板结构的有限元模型相结合,建立了三个考虑随机性的人群负载模型。在雄安高铁站候车大厅评估了楼板在人群激励下的振动响应。进行了数值模拟计算,比较了三种不同类型人群负载的结果。结果表明,当采用包含社会力模型的荷载模型时,大跨度候车大厅的振动响应明显降低。这是对传统荷载模型过于保守的一种修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
KSCE Journal of Civil Engineering
KSCE Journal of Civil Engineering ENGINEERING, CIVIL-
CiteScore
4.00
自引率
9.10%
发文量
329
审稿时长
4.8 months
期刊介绍: The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields. The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering
期刊最新文献
A Novel Rockburst Tendency Index Based on LURR BIM and TLS Point Cloud Integration for Information Management of Underground Coal Mines: A Case Study in Nui Beo Underground Coal Mining in Vietnam Experimental Study on Anisotropic Deformation Behavior and Microstructure Evolution of Red-Bed Mudstone Analysis of the Active Earth Pressure of Sandy Soil under the Translational Failure Mode of Rigid Retaining Walls Near Slopes A Hybrid Numerical-ML Model for Predicting Geological Risks in Tunneling with Electrical Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1