Physiological responses and differential expression of genes involved in ABA and SA signaling during the interaction of the carnation (Dianthus caryophyllus L.) and the fungus Fusarium oxysporum f. sp. dianthi
E. Bustos-Caro, L.M. Melgarejo, A.M. Pinzón, H.D. Ardila
{"title":"Physiological responses and differential expression of genes involved in ABA and SA signaling during the interaction of the carnation (Dianthus caryophyllus L.) and the fungus Fusarium oxysporum f. sp. dianthi","authors":"E. Bustos-Caro, L.M. Melgarejo, A.M. Pinzón, H.D. Ardila","doi":"10.1007/s42161-024-01687-z","DOIUrl":null,"url":null,"abstract":"<p>The carnation (<i>Dianthus caryophyllus</i> L.) stands as a key export important for Colombia, yet its production faces challenges due to vascular wilting triggered by <i>Fusarium oxysporum</i> f. sp. <i>dianthi</i> (Fod). This study examined Fod impact on stomatal resistance, leaf temperature, and dry biomass in carnation plants, alongside its influence on rooted cuttings of two carnation cultivars differing in susceptibility to vascular wilting. Employing a completely randomized design, the resistant cultivar ‘Golem’ and susceptible cultivar ‘Mizuki’, each with four weeks of rooting, were inoculated with Fod, while controls were maintained. Both cultivars exhibited altered leaf temperatures and AUDPC (Area Under Disease Progression Curve) parameters post-inoculation, compared to their controls, indicating leaf temperature’s potential as an early Fod presence indicator. The effects of inoculation with Fod for each cultivar were different for stomatal resistance, associated with the asymptomatic stage of the disease. These findings suggest that the resistant cultivar activates early stomatal closure mechanisms, possibly through hormonal pathways, enhancing its ability to combat the pathogen. Real-time PCR analysis of <i>rga1</i> and <i>mlp43-like</i> genes indicated the involvement of Abscisic Acid (ABA) and Salicylic Acid (SA) hormonal pathways in cultivar-specific responses post-inoculation, even at early stages. These results highlighted Fod presence before symptom development and their significance for devising early detection strategies and breeding genetically resistant cultivars. This study underscores the intricate interplay between plant-pathogen interactions and hormonal signaling pathways, providing valuable insights for effective disease management and cultivar development in carnation production.</p>","PeriodicalId":16837,"journal":{"name":"Journal of Plant Pathology","volume":"50 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42161-024-01687-z","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The carnation (Dianthus caryophyllus L.) stands as a key export important for Colombia, yet its production faces challenges due to vascular wilting triggered by Fusarium oxysporum f. sp. dianthi (Fod). This study examined Fod impact on stomatal resistance, leaf temperature, and dry biomass in carnation plants, alongside its influence on rooted cuttings of two carnation cultivars differing in susceptibility to vascular wilting. Employing a completely randomized design, the resistant cultivar ‘Golem’ and susceptible cultivar ‘Mizuki’, each with four weeks of rooting, were inoculated with Fod, while controls were maintained. Both cultivars exhibited altered leaf temperatures and AUDPC (Area Under Disease Progression Curve) parameters post-inoculation, compared to their controls, indicating leaf temperature’s potential as an early Fod presence indicator. The effects of inoculation with Fod for each cultivar were different for stomatal resistance, associated with the asymptomatic stage of the disease. These findings suggest that the resistant cultivar activates early stomatal closure mechanisms, possibly through hormonal pathways, enhancing its ability to combat the pathogen. Real-time PCR analysis of rga1 and mlp43-like genes indicated the involvement of Abscisic Acid (ABA) and Salicylic Acid (SA) hormonal pathways in cultivar-specific responses post-inoculation, even at early stages. These results highlighted Fod presence before symptom development and their significance for devising early detection strategies and breeding genetically resistant cultivars. This study underscores the intricate interplay between plant-pathogen interactions and hormonal signaling pathways, providing valuable insights for effective disease management and cultivar development in carnation production.
期刊介绍:
The Journal of Plant Pathology (JPP or JPPY) is the main publication of the Italian Society of Plant Pathology (SiPAV), and publishes original contributions in the form of full-length papers, short communications, disease notes, and review articles on mycology, bacteriology, virology, phytoplasmatology, physiological plant pathology, plant-pathogeninteractions, post-harvest diseases, non-infectious diseases, and plant protection. In vivo results are required for plant protection submissions. Varietal trials for disease resistance and gene mapping are not published in the journal unless such findings are already employed in the context of strategic approaches for disease management. However, studies identifying actual genes involved in virulence are pertinent to thescope of the Journal and may be submitted. The journal highlights particularly timely or novel contributions in its Editors’ choice section, to appear at the beginning of each volume. Surveys for diseases or pathogens should be submitted as "Short communications".