{"title":"Advancing software reliability with time series insights: A non‐autoregressive ANN approach","authors":"Shiv Kumar Sharma, Rohit Kumar Rana","doi":"10.1002/qre.3632","DOIUrl":null,"url":null,"abstract":"Software reliability is a critical factor in assessing the health of software and identifying defects. Software reliability growth models (SRGM) are used to estimate the occurrence of software faults. There are various parameterized and non‐parameterized models of SRGM. These models effectively predict fault occurrence for limited testing conditions. To resolve this problem various neural and artificial neural network (ANN) models are proposed. A problem while using ANN is over‐fitting and under‐fitting. Non‐autoregressive time series models, including ANN variants, offer promising solutions to address under‐fitting issues in SRGM, providing enhanced predictive capabilities for fault occurrence across diverse testing conditions. This study proposes a modified version with a Bayesian regularization technique to address over‐fitting. This modification aims to enhance the suitability of the Bayesian regularization framework for nonlinear autoregressive (NAR) models by carefully adjusting regularization parameters. Comprehensive testing with real‐world software failure datasets is conducted to evaluate the effectiveness of the proposed approach. The results demonstrate that our modified approach improved generalization capabilities and increased prediction accuracy. The NAR‐ANN model exhibits a lower mean squared error of 0.12935 and a higher value of 0.99853.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"43 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Software reliability is a critical factor in assessing the health of software and identifying defects. Software reliability growth models (SRGM) are used to estimate the occurrence of software faults. There are various parameterized and non‐parameterized models of SRGM. These models effectively predict fault occurrence for limited testing conditions. To resolve this problem various neural and artificial neural network (ANN) models are proposed. A problem while using ANN is over‐fitting and under‐fitting. Non‐autoregressive time series models, including ANN variants, offer promising solutions to address under‐fitting issues in SRGM, providing enhanced predictive capabilities for fault occurrence across diverse testing conditions. This study proposes a modified version with a Bayesian regularization technique to address over‐fitting. This modification aims to enhance the suitability of the Bayesian regularization framework for nonlinear autoregressive (NAR) models by carefully adjusting regularization parameters. Comprehensive testing with real‐world software failure datasets is conducted to evaluate the effectiveness of the proposed approach. The results demonstrate that our modified approach improved generalization capabilities and increased prediction accuracy. The NAR‐ANN model exhibits a lower mean squared error of 0.12935 and a higher value of 0.99853.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.