Geochemical signatures of metapelites in the Highland Complex, Sri Lanka and Trivandrum Block, India: Implications for provenance, nature and tectonic setting of their source protoliths
A. M. M. G. I. U. B. Athauda, P. L. Dharmapriya, S. P. K. Malaviarachchi, K. Sajeev
{"title":"Geochemical signatures of metapelites in the Highland Complex, Sri Lanka and Trivandrum Block, India: Implications for provenance, nature and tectonic setting of their source protoliths","authors":"A. M. M. G. I. U. B. Athauda, P. L. Dharmapriya, S. P. K. Malaviarachchi, K. Sajeev","doi":"10.1111/iar.12529","DOIUrl":null,"url":null,"abstract":"<p>The investigation of whole-rock major and trace element geochemical data from metapelites, incorporating analyses from both previous studies and new localities within the Highland Complex (HC) of Sri Lanka and the Trivandrum Block of India (TB), aimed to discern the nature and tectonic setting of their provenance. Examination of chondritic REE distribution and K versus K/Rb diagrams suggests that the geochemistry of the studied metapelites closely resembles typical Post Archaean Australian Shale (PAAS), North American Shale Composite (NASC), and Upper Continental Crust (UCC), indicating minimal modification during high-grade metamorphism. Predominantly, the protoliths of the metasediments appear to be shales and greywackes derived from Proterozoic felsic to intermediate sources. Tectonic discrimination diagrams reveal that most metapelites correspond to active continental margins and continental island arcs. These geochemical characteristics suggest that the majority of studied metapelites in the HC and TB originate from felsic to intermediate sources, likely deposited within a continental arc setting. Subsequently, these sediments likely accreted in an accretionary prism and underwent metamorphism during continental-continental collision. The congruence in geochemical signatures between metapelites in the HC and TB, along with established tectonic, geochronological, petrological, mineralogical, and geophysical correlations, implies that precursor sediments of metasedimentary rocks were likely deposited within a laterally extensive Neoproterozoic sedimentary basin.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12529","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of whole-rock major and trace element geochemical data from metapelites, incorporating analyses from both previous studies and new localities within the Highland Complex (HC) of Sri Lanka and the Trivandrum Block of India (TB), aimed to discern the nature and tectonic setting of their provenance. Examination of chondritic REE distribution and K versus K/Rb diagrams suggests that the geochemistry of the studied metapelites closely resembles typical Post Archaean Australian Shale (PAAS), North American Shale Composite (NASC), and Upper Continental Crust (UCC), indicating minimal modification during high-grade metamorphism. Predominantly, the protoliths of the metasediments appear to be shales and greywackes derived from Proterozoic felsic to intermediate sources. Tectonic discrimination diagrams reveal that most metapelites correspond to active continental margins and continental island arcs. These geochemical characteristics suggest that the majority of studied metapelites in the HC and TB originate from felsic to intermediate sources, likely deposited within a continental arc setting. Subsequently, these sediments likely accreted in an accretionary prism and underwent metamorphism during continental-continental collision. The congruence in geochemical signatures between metapelites in the HC and TB, along with established tectonic, geochronological, petrological, mineralogical, and geophysical correlations, implies that precursor sediments of metasedimentary rocks were likely deposited within a laterally extensive Neoproterozoic sedimentary basin.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.