Graph Neural Reaction Diffusion Models

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-01 DOI:10.1137/23m1576700
Moshe Eliasof, Eldad Haber, Eran Treister
{"title":"Graph Neural Reaction Diffusion Models","authors":"Moshe Eliasof, Eldad Haber, Eran Treister","doi":"10.1137/23m1576700","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C399-C420, August 2024. <br/> Abstract. The integration of graph neural networks (GNNs) and neural ordinary and partial differential equations has been extensively studied in recent years. GNN architectures powered by neural differential equations allow us to reason about their behavior, and develop GNNs with desired properties such as controlled smoothing or energy conservation. In this paper we take inspiration from Turing instabilities in a reaction diffusion (RD) system of partial differential equations, and propose a novel family of GNNs based on neural RD systems, called RDGNN. We show that our RDGNN is powerful for the modeling of various data types, from homophilic, to heterophilic, and spatiotemporal datasets. We discuss the theoretical properties of our RDGNN, its implementation, and show that it improves or offers competitive performance to state-of-the-art methods.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1576700","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C399-C420, August 2024.
Abstract. The integration of graph neural networks (GNNs) and neural ordinary and partial differential equations has been extensively studied in recent years. GNN architectures powered by neural differential equations allow us to reason about their behavior, and develop GNNs with desired properties such as controlled smoothing or energy conservation. In this paper we take inspiration from Turing instabilities in a reaction diffusion (RD) system of partial differential equations, and propose a novel family of GNNs based on neural RD systems, called RDGNN. We show that our RDGNN is powerful for the modeling of various data types, from homophilic, to heterophilic, and spatiotemporal datasets. We discuss the theoretical properties of our RDGNN, its implementation, and show that it improves or offers competitive performance to state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图形神经反应扩散模型
SIAM 科学计算期刊》,第 46 卷第 4 期,第 C399-C420 页,2024 年 8 月。 摘要近年来,人们广泛研究了图神经网络(GNN)与神经常微分方程和偏微分方程的整合。由神经微分方程驱动的图神经网络架构允许我们对其行为进行推理,并开发出具有可控平滑或能量守恒等理想特性的图神经网络。在本文中,我们从偏微分方程反应扩散(RD)系统中的图灵不稳定性中获得灵感,提出了一种基于神经 RD 系统的新型 GNN,称为 RDGNN。我们的研究表明,我们的 RDGNN 对各种数据类型(从同嗜、异嗜到时空数据集)的建模都非常强大。我们讨论了我们的 RDGNN 的理论特性及其实现,并证明它能改善最先进方法的性能或提供具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1